【qbytearray 源码】【机构寻底源码】【Flac安卓源码】识别验证码源码_识别验证码源码是什么

来源:fscada源码

1.按键精灵安卓版用百度云识别通过“算数验证码”
2.jmeter中借助OCR实现验证码的识别识别
3.Python OpenCV 过点击式和滑动式图形验证码的校验

识别验证码源码_识别验证码源码是什么

按键精灵安卓版用百度云识别通过“算数验证码”

       百度云识别在简单文字识别上表现出色,因此我们尝试使用其识别算数验证码。验证源码先预览验证,码源码识如下所示:

       显示包含加减乘除四种运算,别验我们需要计算每个等式的证码结果。

       接下来是识别qbytearray 源码运行效果演示。

       实现过程包含以下步骤:

       一、验证源码从模拟器中截图验证码。码源码识

       二、别验识别内容。证码例如,识别解析"-=",验证源码识别为字符串。码源码识

       三、别验判定算式类型。证码通过查找加号、机构寻底源码减号、乘号、除号,判断运算符。

       四、提取数字。以"-="为例,通过减号分割为""和"=",然后去掉"="后的字符得到""。

       五、执行计算。依据判定的运算符计算结果。

       代码如下,使用了xiaomu.mql库进行操作:

       Import "xiaomu.mql"

       定义截图路径。

       输入百度云API和Secret。Flac安卓源码

       执行截图操作。

       使用百度云OCR识别功能。

       打印识别结果。

       定义计算函数,根据运算符计算结果。

       如果需要命令库,可以关注公众号并回复“命令库”获取。

       如需了解百度云文字识别源码及使用方法,可查看先前的文章《百度云文字识别源码分享》。

jmeter中借助OCR实现验证码的识别

       在JMeter进行接口测试时,验证码处理是一个常见的挑战。虽然手动测试时,直接绕过或请求开发设置简单验证码是常见做法,但这并不适用于自动化测试。本文将介绍一种利用OCR技术在JMeter中识别验证码的抄底云图指标源码方法,但请注意,对于背景复杂干扰的,识别率可能不高,适合纯色底纹的情况。

       首先,通过JMeter模拟登录接口,获取验证码。启动JMeter,创建线程组并配置HTTP和Debug采样器。启用监听器,将验证码保存为1.png文件。

       接着,使用Java编写脚本,将转换为Base格式,这包括导入sun.misc.BASEDecoder.jar包,汉字笔顺网站源码创建包和文件,编写ToImage类,并导出为jar包。在Beanshell处理器中,导入此jar包并调用其方法处理验证码。

       对于验证码识别,推荐使用开源的jmeter-captcha插件,从Gitee下载jar包或源码进行二次开发。在JMeter的测试计划中,添加后置处理器,如Beanshell,配置OCR插件参数。简单验证码如纯数字、字母或汉字的识别率较高。

       尽管基础识别率可能有待提高,但通过优化OCR处理代码,可以提升识别效果。后续将分享干扰优化的技巧和深度学习方法,以进一步提升识别准确率。

       本文提供了一个基础的验证码识别框架,欢迎您持续关注并分享给有需要的朋友。

Python OpenCV 过点击式和滑动式图形验证码的校验

       在近期进行App抓包的过程中,我发现该App在特定时间会弹出验证码。完成验证后,系统会提供token,此token是发起正常请求所必需的。

       文章源码地址:github.com/ThinkerWen/C...

       以下是验证码的截图:

       弹出验证码的Response如下:

       完成验证码的Request如下:

       通过观察,我发现只需将验证码的点击坐标发送至完成验证码的接口,即可获取到token。因此,现在的目标是提取坐标。

       观察发现,这个验证码相对简单,因为它没有图案扭曲,所以通过率较高。同时,我也回忆起之前解决滑动验证码的方法(一并展示)。

       要通过验证码,首先需要将目标图案在背景上定位,找到其像素点。为此,我使用了Python的OpenCV库进行识别。

       1.提取:首先,我发现目标都是黑色图案,背景为透明。当我使用cv2.imread(front_image)加载时,显示一片漆黑。即使后来我使用了保留透明通道的加载方式,结果依旧。

       为了解决这个问题,我决定剥离透明通道,将目标图案透明色设置为白色,这样目标图案就自然显现了。

       2.找到目标图的位置:接着,我将目标的三个图案分割出来,分别找出它们的像素位置。由于图案排列位置固定,我直接记录坐标进行像素分割。

       分割后,我将目标图和背景图都转化为灰度,以防止颜色干扰。

       然后进行最佳匹配。然而,匹配结果并不理想,无法准确找到所有三个目标图案,因此需要进一步优化。

       3.优化匹配方案:继续观察后,我发现背景中的目标图案总是白色的,因此我决定保留背景上的白色部分,其余部分转为黑色。

       为了尽可能保留完整的图案,我经过多次尝试,发现-区间的RGB颜色可以保留大部分目标图案的白色。

       同时,我将黑色的目标图案反转为白色。

       由于需要获取的是点击坐标,我将左上角坐标(x1,y1)进行+的偏移,以移动到图案本身上面。

       经过验证,现在的识别方法可以正常通过点击验证码。

       滑动验证码的解决方案与点击验证码类似,甚至现在常见的一种滑动验证码已经有了通用的代码。

       看雪ID:暮至夜寒

       看雪-安全社区|安全招聘|kanxue.com

       本文为看雪论坛精华文章,由暮至夜寒原创,转载请注明来自看雪社区

       阅读原文:

文章所属分类:综合频道,点击进入>>