【开源多商户源码】【如何关联as源码】【资料收集大师源码】正负24的源码反码_正负24的源码反码是什么

时间:2024-12-24 08:14:19 编辑:ppp源码linux 来源:java 社区源码

1.原码、反码、补码
2.24在内存中的存储形式

正负24的源码反码_正负24的源码反码是什么

原码、反码、补码

       è¯·æˆ‘给你的详解:原码、补码和反码

       ï¼ˆ1)原码表示法

       åŽŸç è¡¨ç¤ºæ³•æ˜¯æœºå™¨æ•°çš„一种简单的表示法。其符号位用0表示正号,用:表示负号,数值一般用二进制形式表示。设有一数为x,则原码表示可记作〔x〕原。

       ä¾‹å¦‚,X1= +

       X2= 一

       å…¶åŽŸç è®°ä½œï¼š

       ã€”X1〕原=[+]原=

       ã€”X2〕原=[-]原=

       åŽŸç è¡¨ç¤ºæ•°çš„范围与二进制位数有关。当用8位二进制来表示小数原码时,其表示范围:

       æœ€å¤§å€¼ä¸º0.,其真值约为(0.)

       æœ€å°å€¼ä¸º1.,其真值约为(一0.)

       å½“用8位二进制来表示整数原码时,其表示范围:

       æœ€å¤§å€¼ä¸ºï¼Œå…¶çœŸå€¼ä¸ºï¼ˆï¼‰

       æœ€å°å€¼ä¸ºï¼Œå…¶çœŸå€¼ä¸ºï¼ˆï¼ï¼‰

       åœ¨åŽŸç è¡¨ç¤ºæ³•ä¸­ï¼Œå¯¹0有两种表示形式:

       ã€”+0〕原=

       [-0] 原=

       ï¼ˆ2)补码表示法

       æœºå™¨æ•°çš„补码可由原码得到。如果机器数是正数,则该机器数的补码与原码一样;如果机器数是负数,则该机器数的补码是对它的原码(除符号位外)各位取反,并在未位加1而得到的。设有一数X,则X的补码表示记作〔X〕补。

       ä¾‹å¦‚,[X1]=+

       [X2]= 一

       [X1]原=

       [X1]è¡¥=

       å³ [X1]原=[X1]è¡¥=

       [X2] 原=

       [X2] è¡¥=+1=

       è¡¥ç è¡¨ç¤ºæ•°çš„范围与二进制位数有关。当采用8位二进制表示时,小数补码的表示范围:

       æœ€å¤§ä¸º0.,其真值为(0.)

       æœ€å°ä¸º1.,其真值为(一1)

       é‡‡ç”¨8位二进制表示时,整数补码的表示范围:

       æœ€å¤§ä¸ºï¼Œå…¶çœŸå€¼ä¸ºï¼ˆï¼‰

       æœ€å°ä¸ºï¼Œå…¶çœŸå€¼ä¸ºï¼ˆä¸€ï¼‰

       åœ¨è¡¥ç è¡¨ç¤ºæ³•ä¸­ï¼Œ0只有一种表示形式:

       [+0]è¡¥=

       [+0]è¡¥=+1=(由于受设备字长的限制,最后的进位丢失)

       æ‰€ä»¥æœ‰[+0]è¡¥=[+0]è¡¥=

       ï¼ˆ3)反码表示法

       æœºå™¨æ•°çš„反码可由原码得到。如果机器数是正数,则该机器数的反码与原码一样;如果机器数是负数,则该机器数的反码是对它的原码(符号位除外)各位取反而得到的。设有一数X,则X的反码表示记作〔X〕反。

       ä¾‹å¦‚:X1= +

       X2= 一

       ã€”X1〕原=

       [X1]反=〔X1〕原=

       [X2]原=

       [X2]反=

       åç é€šå¸¸ä½œä¸ºæ±‚补过程的中间形式,即在一个负数的反码的未位上加1,就得到了该负数的补码。

       ä¾‹1. 已知[X]原=,求[X]补。

       åˆ†æžå¦‚下:

       ç”±[X]原求[X]补的原则是:若机器数为正数,则[X]原=[X]补;若机器数为负数,则该机器数的补码可对它的原码(符号位除外)所有位求反,再在未位加1而得到。现给定的机器数为负数,故有[X]è¡¥=[X]原十1,即

       [X]原=

       [X]反=

       åï¼‰ 1

       [X]è¡¥=

       ä¾‹2. 已知[X]è¡¥=,求〔X〕原。

       åˆ†æžå¦‚下:

       å¯¹äºŽæœºå™¨æ•°ä¸ºæ­£æ•°ï¼Œåˆ™ã€”X〕原=〔X〕补

       å¯¹äºŽæœºå™¨æ•°ä¸ºè´Ÿæ•°ï¼Œåˆ™æœ‰ã€”X〕原=〔〔X〕补〕补

       çŽ°ç»™å®šçš„为负数,故有:

       ã€”X〕补=

       ã€”〔X〕补〕反=

       åï¼‰ 1

       ã€”〔X〕补〕补==〔X〕原

       æˆ–者说:

       æ•°åœ¨è®¡ç®—机中是以二进制形式表示的。

       æ•°åˆ†ä¸ºæœ‰ç¬¦å·æ•°å’Œæ— ç¬¦å·æ•°ã€‚

       åŽŸç ã€åç ã€è¡¥ç éƒ½æ˜¯æœ‰ç¬¦å·å®šç‚¹æ•°çš„表示方法。

       ä¸€ä¸ªæœ‰ç¬¦å·å®šç‚¹æ•°çš„最高位为符号位,0是正,1是副。

       ä»¥ä¸‹éƒ½ä»¥8位整数为例,

       åŽŸç å°±æ˜¯è¿™ä¸ªæ•°æœ¬èº«çš„二进制形式。

       ä¾‹å¦‚

        就是+1

        就是-1

       æ­£æ•°çš„反码和补码都是和原码相同。

       è´Ÿæ•°çš„反码是将其原码除符号位之外的各位求反

       [-3]反=[]反=

       è´Ÿæ•°çš„补码是将其原码除符号位之外的各位求反之后在末位再加1。

       [-3]è¡¥=[]è¡¥=

       ä¸€ä¸ªæ•°å’Œå®ƒçš„补码是可逆的。

       ä¸ºä»€ä¹ˆè¦è®¾ç«‹è¡¥ç å‘¢ï¼Ÿ

       ç¬¬ä¸€æ˜¯ä¸ºäº†èƒ½è®©è®¡ç®—机执行减法:

       [a-b]è¡¥=aè¡¥+(-b)补

       ç¬¬äºŒä¸ªåŽŸå› æ˜¯ä¸ºäº†ç»Ÿä¸€æ­£0和负0

       æ­£é›¶ï¼š

       è´Ÿé›¶ï¼š

       è¿™ä¸¤ä¸ªæ•°å…¶å®žéƒ½æ˜¯0,但他们的原码却有不同的表示。

       ä½†æ˜¯ä»–们的补码是一样的,都是

       ç‰¹åˆ«æ³¨æ„ï¼Œå¦‚æžœ+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!)

       []è¡¥

       =[]反+1

       =+1

       =(1)

       =(最高位溢出了,符号位变成了0)

       æœ‰äººä¼šé—®

       è¿™ä¸ªè¡¥ç è¡¨ç¤ºçš„哪个数的补码呢?

       å…¶å®žè¿™æ˜¯ä¸€ä¸ªè§„定,这个数表示的是-

       æ‰€ä»¥n位补码能表示的范围是

       -2^(n-1)到2^(n-1)-1

       æ¯”n位原码能表示的数多一个

       åˆä¾‹ï¼š

       

       åŽŸç ï¼š

       åç ï¼š //正数时,反码=原码

       è¡¥ç ï¼š //正数时,补码=原码

       -

       åŽŸç ï¼š

       åç ï¼š //负数时,反码为原码取反

       è¡¥ç ï¼š //负数时,补码为原码取反+1

       0.

       åŽŸç ï¼š0.

       åç ï¼š0. //正数时,反码=原码

       è¡¥ç ï¼š0. //正数时,补码=原码

       -0.

       åŽŸç ï¼š1.

       åç ï¼š1. //负数时,反码为原码取反

       è¡¥ç ï¼š1. //负数时,补码为原码取反+1

       åœ¨è®¡ç®—机内,定点数有3种表示法:原码、反码和补码

       æ‰€è°“原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。

       åç è¡¨ç¤ºæ³•è§„定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。

       è¡¥ç è¡¨ç¤ºæ³•è§„定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。

       å‡è®¾æœ‰ä¸€ int 类型的数,值为5,那么,我们知道它在计算机中表示为:

       

        5转换成二制是,不过int类型的数占用4字节(位),所以前面填了一堆0。

        现在想知道,-5在计算机中如何表示?

        在计算机中,负数以其正值的补码形式表达。

        什么叫补码呢?这得从原码,反码说起。

        原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。

        比如 是 5的 原码。

        反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。

        取反操作指:原为1,得0;原为0,得1。(1变0; 0变1)

        比如:将 每一位取反,得 。

        称: 是 的反码。

        反码是相互的,所以也可称:

        和 互为反码。

        补码:反码加1称为补码。

        也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。

        比如: 的反码是: 。

        那么,补码为:

        1 =

        所以,-5 在计算机中表达为: 。转换为十六进制:0xFFFFFFFB。

        再举一例,我们来看整数-1在计算机中如何表示。

        假设这也是一个int类型,那么:

        1、先取1的原码:

        2、得反码:

        3、得补码:

        正数的原码,补码,反码都相同,都等于它本身

        负数的补码是:符号位为1,其余各位求反,末位加1

        反码是:符号位为1,其余各位求反,但末位不加1

        也就是说,反码末位加上1就是补码

        原

        反 除符号位,按位取反

        è¡¥ 除符号位,按位取反再加1

        正数的原反补是一样的

        在计算机中,数据是以补码的形式存储的:

        在n位的机器数中,最高位为符号位,该位为零表示为正,为1表示为负;

        其余n-1位为数值位,各位的值可为0或1。

        当真值为正时:原码、反码、补码数值位完全相同;

        当真值为负时: 原码的数值位保持原样,

        反码的数值位是原码数值位的各位取反,

        补码则是反码的最低位加一。

        注意符号位不变。

        如:若机器数是位:

        十进制数 的原码、反码与补码均为:

        十进制数- 的原码、反码与补码分别为:、、

在内存中的存储形式

以0,1代码的形式存储.

       è®¡ç®—机中的有符号数有三种表示方法,即原码、反码和补码。三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位三种表示方法各不相同。

       åŽŸç ï¼šç›´æŽ¥å°†äºŒè¿›åˆ¶æŒ‰ç…§æ­£è´Ÿæ•°çš„形式翻译成二进制,反码:对于负数来说,原码的符号位不变,其他位依次按位取反即得到其反码;正数的反码与原码相同.补码:对于负数来说,将其反码加1,可得到其补码;

       æ­£æ•°çš„补码与原码相同.在计算机系统中,使用补码,可以将符号位和数值域统一处理;

       åŒæ—¶ï¼ŒåŠ æ³•å’Œå‡æ³•ä¹Ÿå¯ä»¥ç»Ÿä¸€å¤„理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。所以在计算机中,数值一律用补码来表示和存储.