1.准备学习下量化,量化量化发现市面上有很多量化平台,源码p源聚宽,租赁米匡,量化量化BIGQUANT等等,源码p源大家使用感受怎么样?
2.LOC度量指标
3.通达信量化擒龙先手!租赁防伪溯源码的样式主附图/选股指标源码分享
4.一大波国外高清量化网址正在袭来...
5.请问国内哪家量化平台比较好?
6.常见的量化量化十大量化投资策略(附源码)
准备学习下量化,发现市面上有很多量化平台,源码p源聚宽,租赁米匡,量化量化BIGQUANT等等,源码p源大家使用感受怎么样?
探索量化投资之路:用户分享各平台体验
作为一位有着6年多量化投资经验的租赁专业人士,我见证了量化投资市场的量化量化变迁。从最初的源码p源中低频策略,到如今的租赁日间高频交易(T0),我尝试过市面上众多的量化平台,包括聚宽、米筐、BIGQUANT等,下面是我对这些平台的一些深入体验和见解。
年是量化投资的转折点,牛市与互联网的结合孕育了量化投资的热潮。各大平台,如米筐、聚宽,都是在那一年崭露头角,它们以Python编程环境、基础研究数据和活跃的社区吸引着投资者。那时的大漠插件源码模块平台,不论是界面设计还是盈利模式,都以用户增长为核心,像互联网产品一样追求用户基础的积累。比如米筐,它的Barra研究体系就像量化投资的入门指南。它通过提供一键式函数实现Barra功能,社区里则充斥着丰富的源码和实践案例,让新手可以轻松上手。
然而,这种模式在年后开始面临挑战。市场波动和政策变化使得许多策略失效,量化投资的圣杯似乎不再那么简单易得。优矿依托于通联数据,保持了其数据质量的优势。聚宽则走出了一条多元化道路,不仅服务券商T0业务,还拥有自己的策略团队,这在一定程度上意味着它们在寻求更深度的投研结合,但同时也放弃了部分线上用户。米筐则转向了机构服务,提供本地部署和自动化解决方案,继续深耕量化领域。
对于BIGQUANT,虽然我使用经验有限,但从市场反馈来看,其发展路径可能与上述平台有所不同。如果你正准备学习量化投资,我建议你通过这些早期的养狗达人源码论坛去寻找资料,尽管一些社区可能已不再活跃,但早期的框架和理念仍值得了解。但请记住,寻找所谓的"圣杯"不再是关键,更重要的是理解和掌握投资的复杂性,理解财务基本面和有效因子的挖掘需要更深入的学习和实践。
总结来说,每个平台都有其特色和局限,而量化投资的真正挑战在于深度学习和持续适应市场变化。在这个过程中,意识到投资的困难是成长的第一步,也是通往成功的关键。
LOC度量指标
LOC度量指标主要用于量化软件代码量。它关注的是源代码行数,能提供一个对代码规模的直观了解。LOC指标常用于软件开发项目的规划、评估以及比较不同程序的大小。
在软件开发过程中,LOC指标被用于衡量代码量,帮助开发者估算完成任务的时间,以及预测程序的维护成本。然而,LOC指标也存在局限性。它不能反映代码的质量或效率,更侧重于代码的物理长度。
对于、Flash等非文本文件,LOC度量指标无法应用。趣音网源码因为它主要针对文本文件,统计文件数量、文本行数和字符数。文件数量提供文件的总体计数,文本行数反映文本内容的长度,而字符数则是所有字符的总数。
例如,对于文本文件的分析,通过LOC度量指标可以得到文件的详细信息,包括文件数量、文本行数和字符数。这有助于理解文本文件的大小和复杂性,对文档的管理以及查找和替换操作提供方便。
比如,对于某个项目,统计得到文件数量为个,文本行数为,行,字符数为,个。这表明项目包含大量文本文件,且每文件平均有行和1,个字符。这样的信息有助于项目团队了解项目规模,制定合理的时间和资源分配。
而“LOC”在中文中的含义是“代码长度”,来源于英文“Length of the code”。它是一个软件开发中的度量指标,主要用于量化源代码的大小。通过统计代码行数,LOC度量指标提供了一个直观的洛克王国源码冰山度量单位,便于评估代码规模,指导项目管理。
例如,LOC指标可以用于评估某个软件项目的工作量。在进行软件开发时,项目经理可以利用LOC指标来估算开发时间、预算和资源需求。这有助于在项目规划阶段进行合理的成本和时间估算。
总结而言,LOC度量指标是一个有用的工具,能够提供关于代码量的清晰、直观的度量。通过分析文件数量、文本行数和字符数,可以得到关于项目规模、复杂度和工作量的重要信息。然而,值得注意的是,LOC指标仅关注代码的物理长度,而忽略代码的质量、可读性和维护性。因此,在使用LOC度量指标时,需要结合其他评估指标,以获得更全面的项目理解。
通达信量化擒龙先手!主附图/选股指标源码分享
通达信量化擒龙先手!主附图/选股指标源码分享
一. 指标简介:
二. 主图指标源码
MA5:MA(C,5);
MA:MA(C,);
MA:MA(C,);
MA:MA(C,);
DIF1:=EMA(CLOSE,)-EMA(CLOSE,);
DEA1:=EMA(DIF1,9);
AAA1:=(DIF1-DEA1)*2*;
AAA上:=IF(AAA1>REF(AAA1,1),AAA1,DRAWNULL);
AAA下:=IF(AAA1
买:=;
入:=AAA1-REF(AAA1,1);
正大:=CROSS(入,买);
DIF:=EMA(CLOSE,)-EMA(CLOSE,);
DEA:=EMA(DIF,);
AAA:=(DIF-DEA)*2*;
牛股:=CROSS(AAA-REF(AAA,1),);
正大牛股:=正大 AND 牛股;
HSL:=V/CAPITAL*>5;
S1:=IF(NAMELIKE('S'),0,1);
S2:=IF(NAMELIKE('*'),0,1);
Z3:=NOT(INBLOCK('近期解禁'));
Z4:=NOT(INBLOCK('拟减持'));
Z5:=NOT(INBLOCK('股东减持'));
Z6:=NOT(INBLOCK('基金减持'));
Z7:=NOT(INBLOCK('即将解禁'));
Z8:=IF(CODELIKE(''),0,1);
Z9:=IF(CODELIKE('8'),0,1);
去掉:=S1 AND S2 AND Z3 AND Z4 AND Z5 AND Z6 AND Z7 AND Z8 AND Z9;
AA:=MA(CLOSE,8);
BB:=((ATAN((AA - REF(AA,1))) * 3.) * );
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
天马:=((((((OPEN <= 均线) AND ((均线 - REF(均线,1)) > 0))
AND (CLOSE > 均线)) AND (BB > 1)) AND ((CLOSE / OPEN) > 1.)));
{ 股价必涨}
AA:=IF(CLOSE/REF(CLOSE,1)>1. AND HIGH/CLOSE<1. AND IF(CLOSE>REF(CLOSE,1),,0)>0, , 0);
SS:=MA((LOW+HIGH+CLOSE)/3,5)>REF(MA((LOW+HIGH+CLOSE)/3,5),1) AND REF(MA((LOW+HIGH+CLOSE)/3,5),1)
SC:=LHHV(MA((LOW+HIGH+CLOSE)/3,5),) AND C>REF(C,1) AND C>O;
MR:=SC AND COUNT(SS,2);
BB:=MR AND NOT(REF(MR,1));
股价必涨:=AA OR BB OR 天马;
{ 抄底}
二十日换手率:=BETWEEN(SUM(HSCOL,),,);{ 意思是 日换手率介于---之间}
DFO:=(C-REF(C,1))/REF(C,1)*<-5;
AAO:=BARSLAST(DFO);
突破:=CROSS(C,REF(O,AAO));
抄底:=二十日换手率 AND 突破;
三.副图指标源码:
DIF1:=EMA(CLOSE,)-EMA(CLOSE,);
DEA1:=EMA(DIF1,9);
AAA1:=(DIF1-DEA1)*2*;
AAA上:=IF(AAA1>REF(AAA1,1),AAA1,DRAWNULL);
AAA下:=IF(AAA1
买:=;
入:=AAA1-REF(AAA1,1);
正大:=CROSS(入,买);
DIF:=EMA(CLOSE,)-EMA(CLOSE,);
DEA:=EMA(DIF,);
AAA:=(DIF-DEA)*2*;
牛股:=CROSS(AAA-REF(AAA,1),);
正大牛股:=正大 AND 牛股;
HSL:=V/CAPITAL*>5;
S1:=IF(NAMELIKE('S'),0,1);
S2:=IF(NAMELIKE('*'),0,1);
Z3:=NOT(INBLOCK('近期解禁'));
Z4:=NOT(INBLOCK('拟减持'));
Z5:=NOT(INBLOCK('股东减持'));
Z6:=NOT(INBLOCK('基金减持'));
Z7:=NOT(INBLOCK('即将解禁'));
Z8:=IF(CODELIKE(''),0,1);
Z9:=IF(CODELIKE('8'),0,1);
去掉:=S1 AND S2 AND Z3 AND Z4 AND Z5 AND Z6 AND Z7 AND Z8 AND Z9;
AA:=MA(CLOSE,8);
BB:=((ATAN((AA - REF(AA,1))) * 3.) * );
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
天马:=((((((OPEN <= 均线) AND ((均线 - REF(均线,1)) > 0))
AND (CLOSE > 均线)) AND (BB > 1)) AND ((CLOSE / OPEN) > 1.)));
{ 股价必涨}
AA:=IF(CLOSE/REF(CLOSE,1)>1. AND HIGH/CLOSE<1. AND IF(CLOSE>REF(CLOSE,1),,0)>0, , 0);
SS:=MA((LOW+HIGH+CLOSE)/3,5)>REF(MA((LOW+HIGH+CLOSE)/3,5),1) AND REF(MA((LOW+HIGH+CLOSE)/3,5),1)
SC:=LHHV(MA((LOW+HIGH+CLOSE)/3,5),) AND C>REF(C,1) AND C>O;
MR:=SC AND COUNT(SS,2);
BB:=MR AND NOT(REF(MR,1));
股价必涨:=AA OR BB OR 天马;
{ 抄底}
二十日换手率:=BETWEEN(SUM(HSCOL,),,);{ 意思是 日换手率介于---之间}
DFO:=(C-REF(C,1))/REF(C,1)*<-5;
AAO:=BARSLAST(DFO);
突破:=CROSS(C,REF(O,AAO));
抄底:=二十日换手率 AND 突破;
四. 选股指标源码
指标源码内容与前文一致,仅包含主图和副图指标源码,用于量化分析股票。指标包括移动平均线、MACD、股价波动判断、换手率分析等,通过设置条件筛选出具有投资潜力的股票。使用时根据具体市场情况和策略进行调整。注意:指标的有效性需结合市场情况综合判断,不应单一依赖。
一大波国外高清量化网址正在袭来...
随着春节的结束,工作和学习的节奏回归正轨,我开始整理各类量化资源,为读者们提供更新内容。在海外资料的探索中,我发现了一些优质的量化资料,包括理论和源码,适合初学者入门。考虑到国内朋友们的需求,我想把这些国外的好资源介绍给大家,希望你们能从中汲取精华,提升自己。
对于国内逐渐兴起的量化交易,虽然起源于国外,但了解和学习的渠道在哪里呢?这里有一份推荐清单:《Best Quant Blogs and Websites》。这个网址是 feedly.com/i/top/quant-...
这个列表收录了个备受国外关注的量化网站和博客,如Quantocracy、Quantpedia和Quantstart等,都是经常被提及的资源。由于是国外站点,访问可能受限,但别担心,我已经将所有相关网址保存,只需回复公Z号『量化君也』的暗号即可获取。
除了上述资源,还有其他文章供你参考,如《Best Quant websites | An unconventional guide》和《TOP Useful Blogs and Websites for Quants》。国外的量化资源丰富多样,国内的朋友可以通过这些站点学习到更多专业知识。
以QuantInsti为例,这个网站可以直接访问,无需登录,它的量化文章分类清晰,是入门学习的好去处。网站的Blogs标签下,你可以找到涵盖自动化交易、机器学习等个版块的深入教程,包括《Algorithmic Trading Strategies》、《Stock Market Data Analysis》等文章。
其中,机器学习版块尤其出色,不仅有理论讲解,还提供实践案例和Python代码,非常适合学习者。如果你想尝试使用神经网络、决策树等算法进行量化交易,这里也有相关的文章推荐,如《Neural Network In Python》和《Decision Tree For Trading Using Python》等。
总的来说,国外的量化资源丰富且实用,借助翻译工具,即使英语基础一般,也能无障碍学习。希望这些信息能帮助到你,欢迎关注『量化君也』公Z号,那里有更多的量化策略和知识分享。我是@quantkoala,期待与你一起交流和进步!
请问国内哪家量化平台比较好?
推荐澎博财经的真格量化。云端运行,行情和交易速度都经过专业优化。
支持期货、期权和ETF的tick级别回测。
有完善的文档和培训教程。
支持编程语言为Python2.7和Python3.5.
上手很快,对用户非常友好。
常见的十大量化投资策略(附源码)
量化投资策略,通过量化方法在金融市场上分析、判断和交易的策略和算法的总称,主要有以下十种:
、海龟交易策略。这是一种全面的趋势跟随型自动化交易策略,详细设计了入场条件、仓位控制、资金管理与止损止盈,可作为复杂交易策略设计与开发的模板。
、阿尔法策略。基于传统基本面分析,通过在期指市场做空,在股票市场构建拟合指数的组合,赚取价差,被动套利。
、多因子选股策略。通过找到与收益率相关的指标,构建股票组合,期望其在一段时间内跑赢或跑输指数,实现正向或反向阿尔法收益。
、双均线策略。通过建立移动平均线,依据均线交叉点进行交易,抓住股票的强势与弱势时刻。
、行业轮动策略。利用市场趋势获利,通过切换行业品种实现收益最大化。
、跨品种套利策略。利用不同相关联指数期货产品之间的价差进行交易,有助于扭曲市场价格回复正常水平,增强市场流动性。
、指数增强策略。旨在提供高于标的指数回报水平的投资业绩,力求保持标的指数的各种特征。
、网格交易策略。利用投资标的在震荡行情中的价格波动进行加仓减仓,捕捉价格震荡趋势以实现盈利。
、跨期套利策略。在同一交易所进行不同交割月份的套利活动,最常见于股指期货。
、高频交易策略。通过利用市场变化中极短的时间差获利,交易速度极快,服务器群组可能被安置在交易所附近以缩短交易时间。
量化交易领域有哪些经典策略
量化交易种比较受宽客们所熟知的量化经典策略有:alpha对冲(股票+期货)
集合竞价选股(股票)
多因子选股(股票)
网格交易(期货)
指数增强(股票)
跨品种套利(期货)
跨期套利(期货)
日内回转交易(股票)
做市商交易(期货)
海龟交易法(期货)
行业轮动(股票)
机器学习(股票)
以上这些经典的量化交易策略源码都可以到掘金量化交易平台查阅。
2025-01-24 16:25
2025-01-24 16:12
2025-01-24 16:04
2025-01-24 16:03
2025-01-24 15:42
2025-01-24 15:10
2025-01-24 14:37
2025-01-24 14:05