1.C#/.NET 实现支持自定义字符表的编解Base64编解码算法
2.浏览器的编码与解码-低级解析
3.xvid是什么视频格式
4.超级好用的C++实用库之Base64编解码
5.HEVC开源编解码器HM编译及使用方法
6.FPGA高端项目:FPGA实现SDI视频编解码工程解决方案,提供3套工程源码和技术支持
C#/.NET 实现支持自定义字符表的码源码源码解码Base64编解码算法
在进行编码研究时,发现.NET内置的编解Convert.ToBaseString方法并不支持自定义字符表。而专业工具CyberChef则完美支持这一功能。码源码源码解码因此,编解我决定尝试自行实现一个支持自定义字符表的码源码源码解码以太金源码Base编解码算法。
尽管网上存在不少C#实现Base的编解教程,但经过筛选后发现,码源码源码解码这些代码在效率和编码风格方面存在较大问题。编解既然.NET Core是码源码源码解码开源的,我们可以从其官方实现中获取灵感进行改进。编解
直接提供修改后的码源码源码解码源代码如下:
使用示例包括解码与编码功能。
浏览器的编解编码与解码-低级解析
理解浏览器的编码与解码过程,特别是码源码源码解码低级解析,有助于消除对URL、编解HTML和JS编码的困惑。首先,解析过程大致如下:URL在发送给服务器时才需要解码,接收时无需处理;
浏览器接收到HTML文档后,HTML解析器构建DOM节点树,CSS解析器生成样式表,JS解析器解析脚本并映射到DOM和CSSOM中;
HTML解码发生在构建DOM树后,编码的源码穿越标签会被识别并还原,如`<div>`会显示为`
`。
对于JS,编码与解码在源码处理后进行,如`javascript:alert('Hello')`和``的处理结果相同,但特殊字符转义会受限。
浏览器解析遵循顺序流,JS影响DOM在HTML解码之前。例如,script标签中的操作可以改变DOM,影响页面展示顺序。至于XSS攻击,取决于具体的编码策略和防御措施。 总的来说,HTML和JS的编码解码过程交织,形成浏览器渲染和交互的动态环境。如果你对深入解析感兴趣,后续会分享更详细的发现,敬请期待。xvid是什么视频格式
XviD是一个开放源代码的MPEG-4视频编解码器,它基于OpenDivX编写,并继承了OpenDivX的许多优点。作为视频编码格式,rxgo 源码XviD支持多种编码模式、量化方式和范围控制,以及运动侦测和曲线平衡分配等编码技术,这使得它在视频压缩效率和画质上表现出色。
XviD的画质质量相对较高,同时其压缩速度虽然较慢,但能够在保持画质的基础上显著减小视频文件的体积,非常适合网络传播和存储。此外,XviD还是世界上最常用的视频编码解码器之一,具有广泛的兼容性和应用前景。
总的来说,XviD是一种高效、高质量的视频编码格式,适用于多种视频处理和播放场景。
超级好用的C++实用库之Base编解码
对于寻求C++实用库的开发者,可以访问微信公众号“希望睿智”。只需添加关注并发送消息“超级好用的C++实用库”,即可获取Base编解码库的源码链接。
Base编码是一种关键的编码技术,它将二进制数据转化为可打印的ASCII字符,常用于在HTTP等协议中传输、angrybots 源码音频、视频等非文本数据。编码过程基于每3个字节(位)转换为4个ASCII字符(6位)的规则,使用个字符,包括字母、数字以及特殊符号+和/。
编码时,如果原始数据长度不是3的倍数,会用填充字符(=)进行调整,确保编码后的字符串长度为4的倍数。解码则是相反的过程,去除填充字符后,将4个Base字符还原为3字节的二进制数据。
我们的CHP_Base库提供了一组简洁的接口:GetEncodeLen用于计算编码后字符串的预期长度,Encode负责实际编码操作;GetDecodeLen则预估解码后数据的大小,Decode执行解码。这些接口都是静态函数,无需实例化。
尽管Base编码增强了数据的可读性,但它并非加密手段,不能保障数据安全。在处理敏感信息时,quarkspwdump 源码应采用专门的加密技术。此外,编码过程会增加约%的数据大小,因此在传输或存储大数据时,要考虑带宽和存储空间的需求。
总的来说,Base编解码是一个实用且易用的工具,适用于多种数据传输和存储场景,尽管在效率和安全性上有所牺牲,但对于常规应用来说,它提供了便利性。
HEVC开源编解码器HM编译及使用方法
HM (HEVC Test Model)是一个开源软件,用于帮助我们理解HEVC编码标准。它包括编码器TAppEncoder和解码器TAppDecoder,能实现HEVC标准中的所有功能,但性能不如商用编码器。该项目由JVET维护。本文记录了笔者在Ubuntu下根据HM项目的README,编译并运行一个小demo的过程。
JVET并未将HM托管到GitHub,而是将其托管在gitlab仓库vcgit.hhi.fraunhofer.de...中。我们可以在该页面找到仓库的git URL,然后在Ubuntu中使用git clone命令克隆源代码:
进入代码目录后,创建名为build的文件夹,并进入该文件夹:
在build目录下运行以下指令:
注意,执行上述指令前需要预先安装cmake工具。
执行cmake后,在当前目录下应该会看到一个Makefile,然后我们可以使用make进行编译:
编译过程可能较长:
编译过程中,如果没有错误,几分钟内即可完成。如果读者在编译过程中遇到依赖问题,可以自行搜索并安装,HM的编译过程相对顺利,没有太多难点。
当make的进度达到%时,说明编译完成。最后几行输出表明编译出的可执行文件位于相应位置,可以在“HM/bin/umake/gcc-9.4/x_/release”目录下找到“MCTSExtractor”“parcat”“SEIRemovalApp”“TAppDecoder”“TAppDecoderAnalyser”“TAppEncoder”等可执行文件。
接下来,我们使用TAppEncoder进行测试,将一个未压缩的yuv序列编码成HEVC视频序列。我们使用的是Derf's Test Media Collection数据集中的akiyo视频序列。下载akiyo_cif.y4m文件后,将其与TAppEncoder可执行文件放在同一文件夹中。
在HM项目的doc目录下,有一个名为software-manual.pdf的说明文档,详细介绍了HM软件的使用方法。通过阅读该文档,我们可以了解TAppEncoder通过-c参数指定配置文件,并在项目的cfg目录下找到示例配置文件。我们将其中一个配置文件拷贝到工作目录下,并执行代码。如果出现错误,可能是因为配置文件中没有指定帧率和编码总帧数。这是一个HM项目的小坑,需要仔细调试。
修改配置文件后,再次执行指令,即可正常编码。编码完成后,可以在当前目录下找到输出文件akiyo_hevc.bin,使用PotPlayer播放,显示输入格式为HEVC。但可能存在一些播放异常,需要进一步检查。
我们可以使用开源软件GitlHEVCAnalyzer对akiyo_hevc.bin进行分析,该软件可以显示视频中的CU、PU等单元以及分块信息。
--更新:使用HM的TAppEncoder对akiyo_cif.y4m进行编码时,编码后的视频画面会发生色彩异常和抖动异常。目前,已找到原因并成功解决。在解决此问题之前,我们需要了解y4m文件格式。Y4M是一种保存原始YUV序列的文件封装格式,包含视频属性信息。而HM的TAppEncoder编码器需要接收仅由视频帧组成的像素矩阵数据。因此,直接将akiyo_cif.y4m文件输入到HM编码器中可能导致帧不对齐,造成抖动。解决方法是提取视频每一帧像素矩阵,丢弃视频属性信息,并将它们写入新文件。使用ffmpeg进行视频内容提取后,将得到的akiyo_yuv.yuv文件输入到TAppEncoder中,以相同方式进行编码,即可正常播放视频。
FPGA高端项目:FPGA实现SDI视频编解码工程解决方案,提供3套工程源码和技术支持
FPGA高端项目:实现SDI视频编解码,提供3套工程源码与技术支持 本文详细阐述了如何使用Xilinx Kintex7-T FPGA开发板进行SDI视频编解码,设计过程涵盖了从输入高清SDI信号,通过GTX解串、SMPTE SDI解码,到最终输出HDMI或SDI视频的全过程。三种不同的工程源码分别对应不同的输出模式:HDMI输出(工程1)、HD-SDI模式(工程2)和3G-SDI模式(工程3),以适应不同的项目需求。工程1:适用于SDI转HDMI,分辨率为x@Hz,适合于需要高清输出的项目。
工程2:针对SDI转SDI,分辨率为x@Hz,适合于需要直接SDI传输的项目,但需注意x@Hz对显示器有一定要求。
工程3:适用于SDI转3G-SDI,同样支持x@Hz,适用于需要高带宽传输的场景。
设计中,使用了FPGA的GTP/GTX资源进行解串,SMPTE SDI IP核进行编码,配合BT转RGB模块转换视频格式,以及图像缓存和Gv驱动器等模块,确保视频处理的稳定性和兼容性。此外,还提供了完整的工程源码和设计文档,以及针对FPGA编解码SDI视频的培训计划,以帮助学生、研究生和在职工程师快速上手和开发相关项目。 要获取这些资源,请查看文章末尾的获取方式。注意,所有代码仅供学习研究,商业用途需谨慎,且部分代码基于公开资源,如有版权问题,请通过私信沟通。