欢迎访问皮皮网官网
皮皮网

【西子影视源码】【天狼系统源码】【app 消息中心源码】manager源码

时间:2024-11-15 18:31:56 分类:热点 来源:丛林法则源码

1.Linux中什么是rpm、yum,二者的有什么区别
2.Android Touch事件InputManagerService源码解析(二)
3.UE4 计时器管理 FTimerManager源码剖析
4.cockroachDB源码分析 - Latch Manager

manager源码

Linux中什么是rpm、yum,二者的有什么区别

       Linux中安装软件一般有三种形式:源码安装、rpm安装、西子影视源码yum安装

       源代码形式安装:

       1. 大多数开源软件都是直接以原码形式发布的。

       2. 源代码一般会被打成.tar.gz的归档压缩文件。

       3. 源代码需要编译成为二进制形式之后才能够运行使用。

       4. 源代码基本编译流程:.configure检查编译环境;make对源代码进行编译;make insall 将生成的可执行文件安装到当前计算机中。

       源代码形式优点:可以根据个人喜好下载任意版本进行编译安装。缺点:操作复杂、编译时间长、极易出现问题、依赖关系复杂。

       RPM安装:

       1. RPM全称为RPM Package Manager,是天狼系统源码Red Hat推出的软件包管理系统,适用于安装用RPM来打包的软件。

       2. RPM仅适用于安装用RPM来打包的软件,是Linux下软件包资源最丰富的类型。

       YUM安装:

       1. YUM是Yellow dog Updater, Modified,是Fedora和Red Hat以及SUSE中的Shell前端软件包管理器。

       2. YUM可以自动下载、安装软件包,并解决依赖性关系,简化软件安装过程。

       总结:Linux中软件安装形式多样,源代码安装自定义性强,RPM安装适用于特定类型的软件,YUM安装则提供自动化的解决方案,解决依赖关系问题,简化安装流程。

Android Touch事件InputManagerService源码解析(二)

       解析Android Touch事件分发过程,app 消息中心源码深入InputManagerService源码。触摸事件的产生与传递机制是本文探讨的核心。

       InputDispatcher接收到事件,通过enqueueInboundEventLocked接口将事件放入mInboundQueue队列,等待分发处理。

       InputDispatcher内部线程在有事件时被唤醒,执行dispatchOnce,根据事件类型调用dispatchMotionLocked进行处理。处理流程涉及找到要处理事件的窗口。

       窗口查找通过findFocusedWindowTargetsLocked方法实现,该方法从map中获取focusedWindowHandle和focusedApplicationHandle,存储目标窗口信息。

       这些句柄的初始化在Activity的生命周期回调中,如Activity.onResume时。具体路径涉及ActivityTaskManagerService、DisplayContent、占星星盘源码InputMonitor和InputManagerService。

       分发循环由prepareDispatchCycleLocked、enqueueDispatchEntryLocked和enqueueDispatchEntriesLocked方法实现,最后调用startDispatchCycleLocked,将事件发送给对应进程。

       InputReader持续从底层读取事件,InputDispatcher通过线程处理分发,直至事件被发送至目标进程。本文深入解析了Touch事件的分发机制与关键步骤,提供了对Android触摸事件处理过程的全面理解。

UE4 计时器管理 FTimerManager源码剖析

       深入剖析UE4中的计时器管理系统FTimerManager,揭示其核心实现与优化细节。在游戏开发中,精准的计时管理对实现流畅的物理交互和高效的性能优化至关重要。UE4提供了丰富的计时器功能,FTimerManager作为其核心组件,android控件源码获取为开发者提供了一套灵活、高效的计时解决方案。

       FTimerManager通过FTimerUnifiedDelegate机制,允许开发者在任意时间点绑定逻辑到计时器上。这一设计使得计时逻辑的实现更加灵活,能够根据不同需求选择合适的执行时机。同时,FTimerManager支持计时器的暂停、重启和清除操作,为动态调整计时逻辑提供了便利。

       在实现细节上,FTimerManager通过稀疏数组TSparseArray来高效管理计时器列表,避免了传统数组的冗余内存使用,提升了内存管理和性能效率。这种数据结构在插入新计时器时,优先填补空洞,确保了空间使用的优化。

       当提及计时器的更新逻辑,FTimerManager在Tick函数中进行轮询处理。这一过程中,FTimerManager不仅维护了活跃计时器的状态,还负责在合适的时间点触发计时逻辑,确保逻辑的执行准确无误。此外,ETimerStatus数据类型用于记录每个计时器的生命周期状态,便于后续操作和状态管理。

       总结而言,FTimerManager在UE4中扮演着关键角色,不仅提供了高效、灵活的计时管理功能,还通过优化的数据结构和高效的时间管理机制,显著提升了游戏性能和开发效率。深入研究其源码,不仅能够对UE4的底层逻辑有更深刻的理解,还能启发开发者在自己的项目中进行创新和优化。

cockroachDB源码分析 - Latch Manager

       闩锁管理器(Latch Manager)在处理请求时,确保并发操作的隔离性。它针对本地键和全局键,以及只读和读写请求,维护了四棵B树。本文将从并发控制的实现方法和闩锁请求释放流程进行说明。

       闩锁管理器使用类似于函数式编程中不可变对象实现思想的策略,通过维护一个共享引用计数(ref)的节点结构,实现了线程安全。在尝试修改节点时,会通过`mut()`函数检查引用计数。只有当引用计数为1时,请求才允许进行原地修改,否则需要创建新的节点,并复制值。

       插入操作示例:向已共享的B树中插入值1的过程。首先,`Clone(root)`原子操作将根节点引用计数加1。接着,`insert()`首先访问根节点,调用`mut(root)`,发现引用计数大于1。于是,复制新的节点,并更新指向子节点的指针,同时子节点的引用计数也加1。之后,插入操作递归访问节点3,完成类似操作后插入值1。

       Crdb闩锁生命周期包括请求的排序、等待和释放。核心操作流程由`sequence()`、`snapshotLocked()`、`insertLocked()`、`wait()`和`Release()`组成。`sequence()`捕获不可变快照,用于阻塞冲突请求。`snapshotLocked()`根据请求类型(只读或读写)对B树进行克隆。`Clone()`是快照的主要逻辑,它仅将根节点的引用计数加1,表示B树已被共享,不允许原地修改,支持按需写入。

       `insertLocked()`向共享的B树中插入闩锁,提供当前插入成功时的B树状态给后续请求。`wait()`根据不同情况阻塞冲突的闩锁,直到前一请求中对应闩锁释放,通过`latch.done`管道通知迭代器停止阻塞。

       `Release()`分步骤完成闩锁释放:通过信道通知等待操作不再阻塞;前一请求释放锁;当前请求从读集链表中移除,关闭快照。

copyright © 2016 powered by 皮皮网   sitemap