1.详谈Linux内核《系统调用》(1)———kmalloc/ Kfree实现与分析
2.malloc 函数详解
3.深入 malloc 函数,带你真正理解内存分配!
4.malloc内存分配过程详解
5.15+ 张图剖析内存分配之 malloc 详解
6.一文了解Linux内存管理,malloc、free 实现原理
详谈Linux内核《系统调用》(1)———kmalloc/ Kfree实现与分析
kmalloc和kfree是Linux内核中用于动态内存分配的函数。kmalloc的三浪主升浪源码指标主要参数包括要分配的内存块大小以及分配标志。size参数确定分配的内存块大小,最小为或字节,最大为K。flags参数则决定了分配的内存是在内核内存、用户内存还是其他类型的内存中,以及在分配时是否需要考虑特定的内存使用限制。其中GFP_KERNEL用于内核内存分配,GFP_USER用于用户内存分配,GFP_ATOMIC在中断上下文中进行无阻塞分配,GFP_HIGHUSER用于高端内存分配,GFP_NOIO和GFP_NOFS用于禁止特定类型的I/O或文件系统调用。
kmalloc通过__builtin_constant_p函数判断size是否为常数,如果为常数且超过slab缓存最大大小,会调用kmalloc_large进行大内存分配。然后调用kmalloc_order_trace,kmalloc_order,以及alloc_pages进行内存分配。如果size不是常数,会调用__kmalloc,然后经过一系列函数调用最终通过alloc_pages_nodemask进行实质性的内存分配。
kfree函数用于释放由kmalloc分配的内存。它首先检查释放对象地址是vb png 源码否有效,然后禁用中断,执行额外的释放检查,获取内存所属的缓存,并判断是否为NUMA架构。如果为NUMA架构,会根据释放对象所在的内核节点与当前CPU所属的内存节点是否相同来决定是就地释放还是释放到其他节点。最后,kfree会释放内存片段,更新缓存状态,并释放page到伙伴子系统,同时调整缓存中的可用对象数量。
通过kmalloc和kfree的交互,Linux内核能够灵活地在内核空间和用户空间中分配和释放内存,满足各种应用需求。这些函数的实现涉及内存管理的多个层面,包括常数检测、页分配、内存节点判断以及缓存管理,展示了内核在资源分配上的高效性和灵活性。
malloc 函数详解
对C编程者而言,malloc函数的普遍认识可能仅限于它是个内存分配工具,需要包含特定头文件,与free函数配合使用。然而,malloc实际上只是一个C标准库中的普通函数,并非系统关键组件或内建关键字。
malloc的spring 4.3.13源码核心是分配指定大小的内存空间,Linux下可能的原型是`void *malloc(size_t size)`,Windows下则是`extern void *malloc(unsigned int num_bytes)`。如果分配成功,函数返回指向该内存的指针,否则返回NULL。使用完毕后,记得用free释放内存以避免内存泄漏。void *指针的灵活性允许其转化为任何类型指针,但必须明确转换。
malloc不仅分配内存,还会返回void指针,这可能导致一些误解,例如误认为`p = malloc(sizeof(int))`直接将void转换为int,实际上需要明确转换。同时,malloc分配的内存大小必须明确指定,否则可能造成数据溢出。
malloc和new的不同在于new能自动计算和初始化内存,而malloc则需要手动进行。malloc返回的是内存地址,不保证初始化,这可能导致随机数据。理解内存分配和释放的配对原则,即malloc后必须free,但多次释放空指针或释放非空指针可能会导致错误。
malloc的实现涉及操作系统层面的虚拟内存管理、内存页映射、源码网博客内存分配和释放机制,包括brk和sbrk系统调用,以及rlimit资源限制。一个基础的malloc实现可能涉及内存块的管理,如block结构,查找、分配、合并碎片等策略。然而,这只是一个简化版本,实际的malloc实现会更复杂,包含更多的优化和错误处理。
深入 malloc 函数,带你真正理解内存分配!
深入理解内存分配的关键在于理解malloc函数的工作原理。在C/C++编程中,内存管理对于服务器开发至关重要,尽管高级语言如Go、Java和Python通常有垃圾回收机制,但C/C++程序员需要直接操作内存。
当我们调用malloc函数时,看似申请了1GB内存,但在实际运行中,如图所示,进程使用的物理内存只有KB。这是因为内存分配涉及虚拟内存和物理内存的概念。虚拟内存是java 源码 资讯程序使用的地址空间,而内核为每个进程管理这些空间,并通过brk指针来控制堆空间的分配。
malloc函数实际是通过移动brk指针来分配和释放堆空间,并非直接在物理内存上操作。当我们申请内存时,Linux的brk()系统调用会调整堆空间的边界。然而,虚拟内存地址必须映射到物理内存才能被真正使用,这解释了为什么大内存申请通常只占用少量物理内存,直到程序尝试访问这些内存时才动态映射物理内存。
总结来说,内存分配并非一蹴而就,而是通过虚拟内存映射和物理内存的动态分配来实现的。这有助于减轻进程对物理内存的压力。如果你对C/C++ Linux服务器架构师的学习资料感兴趣,可以加入我们的学习群获取更多资源。
malloc内存分配过程详解
malloc作为C/C++语言库标准提供的一个函数,用于动态分配内存。通过调用malloc接口,开发者可以为程序分配一段连续的内存空间,而不需要在编译时预估空间大小。分配的内存空间在使用完毕后,可以通过free接口释放。然而,malloc背后的调用机制和原理,可能对一些开发者来说并不那么熟悉。
其实,malloc只是C语言库标准提供的一般函数,它的效率相比自行实现的malloc可能有所降低。然而,通过编写一个简单的malloc,可以深入理解C库的实现原理,其与库函数的实现原理基本一致。下面,我们来探索malloc的一些关键概念和实现原理。
一、malloc的定义
标准C定义中,malloc函数的原型通常如下所示,具体实现取决于编译环境和操作系统的实现。
二、Linux的内存管理
在Linux环境下,内存管理涉及虚拟内存与物理内存的交互。现代操作系统采用虚拟内存技术,为每个进程提供一个仿佛独立的2N字节内存空间(N为机器的位数),如在位操作系统中,每个进程的虚拟内存空间为字节。此技术简化了程序的编写,并方便了操作系统对进程之间的隔离管理。
虚拟内存管理主要由内存管理单元(MMU)和页表构成。MMU负责将虚拟内存地址映射到物理内存地址上,单位为页。页表则是用于管理虚拟内存与物理内存之间映射关系的数据结构。
三、Linux进程级的内存管理
在Linux中,进程的内存空间主要分为内核空间和用户空间。malloc分配的内存空间位于堆空间(Heap)上,Linux通过维护一个break指针来管理堆空间。break指针指向已映射的内存区域,而未映射区域可能引发访问错误。
通过brk和sbrk系统调用,可以调整break指针的位置,从而改变进程可用的堆空间大小。brk直接设置break指针至指定地址,sbrk则在当前位置基础上增加指定增量。成功执行时,brk返回0,sbrk返回break指针的当前位置。
四、实现一个简单的malloc
在理解了Linux内存管理的基础上,我们可以尝试实现一个简单的malloc。注意,这个实现主要作为学习和理解内存管理的工具,实际应用中可能并不高效。
实现过程中,我们会组织堆内存空间为块(Block),每个块包含元信息(如数据区大小、空闲状态等)和实际分配的内存区域。通过块链表结构和适当的查找算法,可以高效地分配和释放内存。
实现细节包括:初始化块链表、遍历查找合适的块、分配新块或分裂现有块等。整个过程涉及对内存管理的深入理解,包括页对齐、字节对齐以及内存空间的合理利用。
总结,通过理解malloc的定义、Linux内存管理机制以及实现一个简单的malloc,可以对动态内存管理有更全面的认识。这些知识对于编写高效、安全的C/C++程序至关重要。
+ 张图剖析内存分配之 malloc 详解
本文将深入剖析内存分配中的malloc函数,虽然不详述源码,但重点讲解其实际操作。首先,理解malloc分配的内存结构至关重要。
当malloc分配内存时,会额外添加首部和尾部。如图所示,分配的0x字节内存中,浅绿色fill部分是用户请求的,返回的是该区域的起始指针。fill区域周围有预填充的gap,用于区分用户可使用区域和不可使用区域,且在归还时能检测是否越界。
内存管理涉及层次结构,系统在程序启动前会用__cdecl_heap_init分配堆空间,构建管理动态内存的个HEADER节点链表,每个节点管理1MB内存。每个节点结构中包含指向虚拟地址空间的pHeapData,这部分相当于未分配的"门牌号"。
接下来是内存页的划分和管理,新的内存页被分为K大小的段,并按需挂载到链表。分配和归还过程包括从链表查找空间、开辟新group、合并空闲内存以及记录使用情况。当一个group全回收后,不会立即归还系统,而是等待其他group的回收一起操作,以提高效率。
通过以上图解和步骤,我们对malloc的内存分配有了直观的认识。要了解更多细节,可以参考相关视频教程,如"C++开发"系列,以及获取更多C/C++和Linux架构师学习资源。
一文了解Linux内存管理,malloc、free 实现原理
malloc / free 是Linux内存管理中的关键函数。malloc用于分配指定大小的内存空间,返回一个指向该空间的指针。free用于释放之前由malloc分配的内存空间。使用示例包括动态内存分配的系统调用:brk / sbrk。brk用于返回堆的顶部地址,sbrk用于扩展堆。我们通常通过sbrk来扩展堆,将空闲内存空间作为缓冲池,然后通过malloc / free管理缓冲池中的内存。malloc和free的实现方式有多种,包括显式空闲链表、分离的空闲链表和伙伴系统等。其中,伙伴系统是分离适配的一种特例,其每个大小类的空闲链表包含大小相等的块,并且大小都是2的幂。tcmalloc是Google开发的内存分配器,主要利用了池化思想来管理内存分配。malloc使用链表管理内存块,不同实现方式在不同场景下可能使用不同的匹配算法。在分配的空间中包含一个首部来记录控制信息。函数应该是字对齐的,以简化对齐实现和降低管理成本。free只需要传递一个指针就可以释放内存,空间大小可以从首部读取。
mallocåºå±å®ç°ååç
å¯ä»¥åºäºä¼ä¼´ç³»ç»å®ç°ï¼ä¹å¯ä»¥ä½¿ç¨åºäºé¾è¡¨çå®ç°é½æ¯æ©å±heapçä¸çbrk
Malloc使ç¨çæ¯mmapç第äºç§ç¨æ³ï¼å¿åæ å°ï¼ã
1ï¼å½å¼è¾ç空é´å°äº K æ¶ï¼è°ç¨ brkï¼ï¼å½æ°ï¼malloc çåºå±å®ç°æ¯ç³»ç»è°ç¨å½æ° brkï¼ï¼ï¼å ¶ä¸»è¦ç§»å¨æé _enddata(æ¤æ¶ç _enddata æçæ¯ Linux å°å空é´ä¸å 段çæ«å°¾å°åï¼ä¸æ¯æ°æ®æ®µçæ«å°¾å°å)ã
2ï¼å½å¼è¾ç空é´å¤§äº K æ¶ï¼mmapï¼ï¼ç³»ç»è°ç¨å½æ°æ¥å¨èæå°å空é´ä¸ï¼å åæ ä¸é´ï¼ç§°ä¸ºâæ件æ å°åºåâçå°æ¹ï¼æ¾ä¸å空é´æ¥å¼è¾ã
Mallocå½æ°ç¨äºå¨æåé å åã为äºåå°å åç¢çåç³»ç»è°ç¨çå¼éï¼mallocå ¶éç¨å åæ± çæ¹å¼ï¼å ç³è¯·å¤§åå åä½ä¸ºå åºï¼ç¶åå°å åºå为å¤ä¸ªå ååï¼ä»¥åä½ä¸ºå å管ççåºæ¬åä½ãå½ç¨æ·ç³è¯·å åæ¶ï¼ç´æ¥ä»å åºåé ä¸ååéç空é²åãMallocéç¨éå¼é¾è¡¨ç»æå°å åºåæè¿ç»çã大å°ä¸ä¸çåï¼å å«å·²åé ååæªåé åï¼åæ¶mallocéç¨æ¾ç¤ºé¾è¡¨ç»ææ¥ç®¡çææç空é²åï¼å³ä½¿ç¨ä¸ä¸ªååé¾è¡¨å°ç©ºé²åè¿æ¥èµ·æ¥ï¼æ¯ä¸ä¸ªç©ºé²åè®°å½äºä¸ä¸ªè¿ç»çãæªåé çå°åã
å½è¿è¡å ååé æ¶ï¼Mallocä¼éè¿éå¼é¾è¡¨éåææç空é²åï¼éæ©æ»¡è¶³è¦æ±çåè¿è¡åé ï¼å½è¿è¡å åå并æ¶ï¼mallocéç¨è¾¹çæ è®°æ³ï¼æ ¹æ®æ¯ä¸ªåçåååæ¯å¦å·²ç»åé æ¥å³å®æ¯å¦è¿è¡åå并ã
1ã空é²åå¨ç©ºé´ä»¥ç©ºé²é¾è¡¨çæ¹å¼ç»ç»ï¼å°åéå¢ï¼ï¼æ¯ä¸ªåå å«ä¸ä¸ªé¿åº¦ãä¸ä¸ªæåä¸ä¸åçæé以åä¸ä¸ªæåèªèº«åå¨ç©ºé´çæéãï¼ å 为ç¨åºä¸çæäºå°æ¹å¯è½ä¸éè¿mallocè°ç¨ç³è¯·ï¼å æ¤malloc管çç空é´ä¸ä¸å®è¿ç»ãï¼
2ãå½æç³è¯·è¯·æ±æ¶ï¼mallocä¼æ«æ空é²é¾è¡¨ï¼ç´å°æ¾å°ä¸ä¸ªè¶³å¤å¤§çå为æ¢ï¼é¦æ¬¡éåºï¼(å æ¤æ¯æ¬¡è°ç¨mallocæ¶å¹¶ä¸æ¯è±è´¹äºå®å ¨ç¸åçæ¶é´ï¼ã
3ãå¦æ该åæ°å¥½ä¸è¯·æ±ç大å°ç¸ç¬¦ï¼åå°å ¶ä»é¾è¡¨ä¸ç§»èµ°å¹¶è¿åç»ç¨æ·ãå¦æ该å太大ï¼åå°å ¶å为两é¨åï¼å°¾é¨çé¨ååç»ç¨æ·ï¼å©ä¸çé¨åçå¨ç©ºé²é¾è¡¨ä¸ï¼æ´æ¹å¤´é¨ä¿¡æ¯ï¼ãå æ¤mallocåé çæ¯ä¸åè¿ç»çå åã
4ãéæ¾æ¶ï¼é¦å æ索空é²é¾è¡¨ï¼æ¾å°å¯ä»¥æå ¥è¢«éæ¾åçåéä½ç½®ãå¦æä¸è¢«éæ¾åç¸é»çä»»ä¸è¾¹æ¯ä¸ä¸ªç©ºé²åï¼åå°è¿ä¸¤ä¸ªåå为ä¸ä¸ªæ´å¤§çåï¼ä»¥åå°å åç¢çã
å 为brkãsbrkãmmapé½å±äºç³»ç»è°ç¨ï¼è¥æ¯æ¬¡ç³è¯·å åï¼é½è°ç¨è¿ä¸ä¸ªï¼é£ä¹æ¯æ¬¡é½ä¼äº§çç³»ç»è°ç¨ï¼å½±åæ§è½ï¼å ¶æ¬¡ï¼è¿æ ·ç³è¯·çå å容æ产çç¢çï¼å 为å æ¯ä»ä½å°åå°é«å°åï¼å¦æé«å°åçå å没æ被éæ¾ï¼ä½å°åçå åå°±ä¸è½è¢«åæ¶ã
æ以mallocéç¨çæ¯å åæ± ç管çæ¹å¼ï¼ptmallocï¼ï¼Ptmalloc éç¨è¾¹çæ è®°æ³å°å åååæå¾å¤åï¼ä»è对å åçåé ä¸åæ¶è¿è¡ç®¡çã为äºå ååé å½æ°mallocçé«ææ§ï¼ptmallocä¼é¢å åæä½ç³»ç»ç³è¯·ä¸åå åä¾ç¨æ·ä½¿ç¨ï¼å½æ们ç³è¯·åéæ¾å åçæ¶åï¼ptmallocä¼å°è¿äºå å管çèµ·æ¥ï¼å¹¶éè¿ä¸äºçç¥æ¥å¤ææ¯å¦å°å ¶åæ¶ç»æä½ç³»ç»ãè¿æ ·åçæ大好å¤å°±æ¯ï¼ä½¿ç¨æ·ç³è¯·åéæ¾å åçæ¶åæ´å é«æï¼é¿å 产çè¿å¤çå åç¢çã
2024-12-24 20:24
2024-12-24 19:48
2024-12-24 19:29
2024-12-24 19:25
2024-12-24 19:11
2024-12-24 18:17
2024-12-24 18:02
2024-12-24 17:59