皮皮网

【答题赚钱游戏源码】【go ethereum 源码学习】【python k means源码】stylegan源码解析

来源:517精品源码 时间:2024-12-24 10:29:25

1.玩转StyleGan2:手把手教你安装并运行项目!源码
2.DragGAN官方代码手把手安装部署教程
3.如何使用stylegan训练自己的解析数据?

stylegan源码解析

玩转StyleGan2:手把手教你安装并运行项目!

       探索如何安装并运行StyleGAN2项目,源码本指南将一步步带你入门。解析

       我们将从以下几个主题出发:

       安装与运行

       虚拟人脸编辑,源码操控表情

       真实人脸编辑,解析答题赚钱游戏源码操控表情

       云端运行

       首先,源码我们来学习如何安装并运行StyleGAN2。解析

       你需要满足以下硬件与软件需求:

       Linux或Windows操作系统(推荐Linux,源码因其性能与兼容性优势)

       位Python 3.6版本,解析推荐使用Anaconda3,源码且确保numpy 1..3或以上版本

       TensorFlow 1.或1.,解析且支持GPU(不支持TensorFlow 2.0)

       高规格NVIDIA GPU、源码驱动、解析CUDA .0工具包和cuDNN 7.5

       Docker用户需使用提供的源码Dockerfile构建所需库依赖的镜像

       硬件要求重点在于“高端显卡”。使用RTX ti(滴滴云服务器)或GTX 皆可运行。

       安装过程包含以下步骤:

       安装git

       获取StyleGAN2源代码

       安装Visual Studio

       安装CUDA和CUDNN

       安装Anaconda

       安装pip依赖

       修改部分源代码

       运行项目生成

       接下来,详细指导如何完成上述步骤:

       1. 安装git

       git是一个分布式版本控制软件,用于方便地管理源代码。使用以下命令安装:Win+R输入cmd,输入git。

       完成安装后,在命令行输入git,go ethereum 源码学习若显示版本信息,表示安装成功。

       2. 获取源代码

       将源代码存入桌面的StyleGAN2文件夹。输入命令,路径根据实际情况调整。

       3. 安装Visual Studio

       为了编译代码,需要安装Visual Studio 。安装过程需注意选择C++开发工具。

       4. 安装CUDA和CUDNN

       安装CUDA与CUDNN对于基于深度学习的项目至关重要。遵循官方指南完成安装。

       5. 安装Anaconda

       Anaconda用于创建Python虚拟环境,便于多个项目同时运行。选择适合的Anaconda版本进行安装。

       6. 安装pip依赖

       安装numpy 1..3和TensorFlow 1.依赖,确保顺利运行项目。

       7. 修改源代码

       根据需要修改部分源代码,确保项目正确执行。

       8. 运行项目生成

       完成上述步骤后,运行项目生成高清虚拟或真实人脸。

       至此,你已成功安装并运行StyleGAN2项目,可以生成高分辨率的python k means源码人脸图像,为创意项目添彩。

DragGAN官方代码手把手安装部署教程

       在StableDiffusion尚未问世的时期,DragGAN是生成领域的领头羊。四年前,StyleGAN的发布以其“超高清且逼真”的效果震惊了众人。

       当时,我的公众号"托尼是塔克"上发布了一系列关于该项目的文章。时光荏苒,没想到这个项目还能焕发新生。

       回到正题,今天我将带领大家一步一步完成DragGAN的安装部署。

       StyleGAN的安装过程繁琐,需要安装VS、cudnn、cuda等软件,还要修改代码并配置路径等等。相比之下,DragGAN的环境配置几乎与StyleGAN3完全一致,安装过程自然也不会简单。

       我将分享我的安装流程,并记录下来,以供参考。android日志管理源码

       如果嫌麻烦,也可以下载离线版本,一键运行。

       环境配置如下:

       操作系统:Win

       显卡:RTX

       辅助软件: CMD、Git、Conda、VS、cudnn、cuda

       显卡是GAN项目的关键硬件,不同尺寸模型所需的显存不同。RTX可完美支持x任务,一般情况下6G显存足以运行这个项目。

       关于基础软件的详细安装步骤,可参考我之前关于Stylegan2和 Stylegan3的教程。

       现在让我们开始今天的主题:

       1. 获取源代码

       由于这是一个开源项目,我们首先需要获取源代码。获取源代码有两种方式:命令行或直接下载压缩包。

       命令行方式:确保安装了Git工具,然后在CMD中执行如下命令:

       切换到E盘或D盘(避免C盘),进入DEV文件夹,获取DragGAN的源代码。

       压缩包获取方式:点击Download ZIP下载,利鼎时时源码然后解压至磁盘,比如E盘DEV文件夹。

       解压后,去除文件名中的“-main”。这个main曾用“master”命名,但因不尊重某类人而更改。

       2. 创建虚拟环境

       这是一个基于Python的项目,为了保证不同项目的独立性,我们将使用Conda创建虚拟环境。

       在CMD中输入以下命令,创建并激活虚拟环境。

       3. 修改配置文件

       DragGAN包含一个Conda依赖文件,可以直接用来创建虚拟环境并安装所有依赖。

       然而,这个文件在当前Windows环境下可能存在安装问题,如找不到cudatoolkit=.1。我尝试修改,但其他问题依旧。因此,我自行创建了一个requirements.txt文件,将内容粘贴其中,并放在DragGAN文件夹中,使用pip安装。

       4. 下载模型

       项目官方提供了一个下载模型的sh脚本,但Windows用户无法直接使用。解决方法是右键打开下载_model.sh文件,获取模型下载地址并下载,解压至DragGAN的checkpoint文件夹,并将模型文件名改为stylegan2_开头。

       发现了一个叫download_model.bat的文件,可以一键下载模型。

       5. 运行项目

       按照上述步骤,我们就可以运行项目了。网络通畅时,一般不会出现问题。运行如下命令启动GUI界面:

       在GUI界面上,只需点击“Start”按钮,拖拽狗子脸部,即可生成。GUI动态效果很酷,但菜单较小,有时会崩溃,模型切换也不方便。

       启动WebUI,输出网址后,打开即可查看生成的。使用方法包括选择模型、种子、点选位置并拖拽等。

       WebUI版的动态效果不如本地GUI,但最终结果相同。

       项目提供了许多高质量模型,如英伟达官方的FFHQx和human模型。生成的可保存,但与真实相比,效果参差不齐。

       了解了这些不足,这个项目仍然很有趣,可以可视化StyleGAN的使用,快速接入各种模型。如果有财力,可以自己训练模型。

       虽然项目成本高昂,但结果值得期待。至少,它将StyleGAN的使用可视化,为用户提供了丰富的模型选择。

如何使用stylegan训练自己的数据?

       在探讨如何使用stylegan训练自己的数据之前,我们先回顾了上一篇内容中对DragGAN项目的正确部署方式,使得用户能够实现自由拖拽式的编辑。然而,上篇内容仅限于使用项目预置的,本篇将引领大家探索如何将项目应用扩展至任意的编辑。

       实现这一目标的关键在于PTI项目。PTI允许用户将自定义训练成StyleGAN的潜空间模型,进而实现对任意的编辑。为确保操作环境满足需求,我们将继续在AutoDL云平台上使用Python 3.8和CUDA .8的镜像,确保环境配置符合项目要求。

       在准备环境中,首先下载项目源码。不必担心缺失requirements.txt文件,因为已经准备妥当。接着,下载必要的预训练模型,即StyleGAN的生成器文件ffhq.pkl和预处理器文件align.dat,确保它们被放置在pretrained_models目录下。

       进行预处理是关键步骤,其目标是完成人脸关键点的检测工作,从而将待编辑上传至image_original目录下。同时,调整utils/align_data.py文件中所包含的路径,并更新configs/paths_config.py中的参数设置。执行相关脚本以完成预处理过程。

       接下来,使用PTI进行GAN反演,这一过程允许将映射到生成模型的潜空间中,并通过调整潜空间向量来修改图像外观。利用这种方式,可以实现对图像的多种编辑,包括姿势改变、外观特征修改或风格添加。通过编辑潜空间,可以实现对图像的高级编辑,同时确保图像的真实性和准确性。

       完成反演后,需要将文件转换为DragGAN可识别的模型文件格式。通过提供的转换脚本,将pt文件转换为pkl文件格式。转换完成后,将checkpoints目录下的模型文件和对应的embeddings目录下的文件放入DragGAN项目的checkpoints目录下。最后,重启DragGAN,至此,训练自己的数据过程已告完成。

       为了简化操作流程,我们已将上述步骤整合成Jupyter Notebook文档,提供了一键执行功能,使得用户能够轻松实现图像反演。只需确保将align.dat文件放入项目pretrained_models目录下,将visualizer_drag_gradio_custom.py放入项目根目录下,然后运行ipynb文件即可。

       获取此整合包的方式已在原文末尾提供。此过程简化了操作步骤,使得即使是技术新手也能快速上手,实现对任意的高级编辑。通过遵循上述指南,您可以探索使用StyleGAN训练自定义数据的无限可能,为图像编辑领域带来创新与便利。