欢迎来到【mud魔教源码】【阿里图床上传源码】【照妖镜源码不用点允许】mumpy 案例源码_mui案例-皮皮网网站!!!

皮皮网

【mud魔教源码】【阿里图床上传源码】【照妖镜源码不用点允许】mumpy 案例源码_mui案例-皮皮网 扫描左侧二维码访问本站手机端

【mud魔教源码】【阿里图床上传源码】【照妖镜源码不用点允许】mumpy 案例源码_mui案例

2025-01-11 17:34:01 来源:{typename type="name"/} 分类:{typename type="name"/}

1.七爪源码:NumPy 简介:5 个非常有用的案案例函数
2.硬核福利量化交易神器talib中28个技术指标的Python实现(附全部源码)
3.Python数据分析实战-实现T检验(附源码和实现效果)
4.七爪源码:Python 中的数据预处理:准备好数据集的 4 个基本步骤
5.10分钟!用Python实现简单的例源人脸识别技术(附源码)

mumpy 案例源码_mui案例

七爪源码:NumPy 简介:5 个非常有用的函数

       与数字作斗争?让 NumPy 解决问题。

       介绍

       NumPy 是案案例为科学计算设计的 Python 包。它利用与数学分支相关的例源各种公式,如线性代数和统计学。案案例数据科学和机器学习领域的例源mud魔教源码专业人员可能对 NumPy 的了解不够深入,但 NumPy 的案案例优势在于其数组操作速度比 Python 列表快。下面通过示例对比了 Python 列表和 NumPy 数组的例源执行时间。

       “我们为什么要间接使用 NumPy?”

       除非您专注于应用数学或统计学,案案例否则您通常需要处理表格形式的例源数据,并使用 Pandas 库进行数据预处理。案案例 Pandas 是例源一个在 Python 中提供高性能数据操作的开源库。它建立在 NumPy 的案案例基础上,因此使用 Pandas 需要 NumPy。例源

       有用的案案例 NumPy 函数

       1. np.argmax() 函数

       返回沿轴的最大值的索引。使用 np.argmax() 时,可以按 SHIFT+TAB 查看文档字符串以获取更多细节。

       例子:创建一个二维数组来查找数组的阿里图床上传源码 argmax()。输出结果将显示最大值的索引。

       输出结果如下:

       将数组 a 作为参数传递给 np.argmax() 后,将得到以下输出。

       2. np.tensordot() 函数

       用于计算沿指定轴的张量点积。打开文档字符串查看该函数的示例。给定两个张量 a 和 b,以及一个包含两个类似数组的对象,`(a_axes, b_axes)`,函数将对 a 和 b 的元素进行求和,这些元素位于指定轴 `a_axes` 和 `b_axes` 上。第三个参数可以是一个非负整数,表示将最后的“N”维度 `a` 和 `b` 相加。

       3. np.quantile() 函数

       计算沿指定轴的数据的第 q 个分位数。该函数提供了一种在数组中查找特定位置的方法。

       4. np.std() 函数

       计算沿指定轴的标准偏差,用于度量数组元素分布的分散程度。默认情况下,照妖镜源码不用点允许函数会将数组扁平化,但也可以指定轴进行计算。

       例子:通过示例演示 np.std() 的使用方法。

       5. np.median() 函数

       计算沿指定轴的中位数。该函数返回数组元素的中位数,提供了一种找到数据集中点的方法。

硬核福利量化交易神器talib中个技术指标的Python实现(附全部源码)

       本文将带您深入学习纯Python、Pandas、Numpy与Math实现TALIB中的个金融技术指标,不再受限于库调用,从底层理解指标原理,提升量化交易能力。

       所需核心库包括:Pandas、Numpy与Math。重要提示:若遇“ewma无法调用”错误,建议安装Pandas 0.版本,或调整调用方式。迷你世界软件源码下载

       我们逐一解析常见指标:

       1. 移动平均(Moving Average)

       2. 指数移动平均(Exponential Moving Average)

       3. 动量(Momentum)

       4. 变化率(Rate of Change)

       5. 均幅指标(Average True Range)

       6. 布林线(Bollinger Bands)

       7. 转折、支撑、阻力点(Trend, Support & Resistance)

       8. 随机振荡器(%K线)

       9. 随机振荡器(%D线)

       . 三重指数平滑平均线(Triple Exponential Moving Average)

       . 平均定向运动指数(Average Directional Movement Index)

       . MACD(Moving Average Convergence Divergence)

       . 梅斯线(High-Low Trend Reversal)

       . 涡旋指标(Vortex Indicator)

       . KST振荡器(KST Oscillator)

       . 相对强度指标(Relative Strength Index)

       . 真实强度指标(True Strength Index)

       . 吸筹/派发指标(Accumulation/Distribution)

       . 佳庆指标(ChaiKIN Oscillator)

       . 资金流量与比率指标(Money Flow & Ratio)

       . 能量潮指标(Chande Momentum Oscillator)

       . 强力指数指标(Force Index)

       . 简易波动指标(Ease of Movement)

       . 顺势指标(Directional Movement Index)

       . 估波指标(Estimation Oscillator)

       . 肯特纳通道(Keltner Channel)

       . 终极指标(Ultimate Oscillator)

       . 唐奇安通道指标(Donchian Channel)

       

参考资料:

乐学偶得系列笔记,开源项目ultrafinance。

       深入学习并应用这些指标,将大大提升您的量化交易与金融分析技能。

Python数据分析实战-实现T检验(附源码和实现效果)

       T检验是一种用于比较两个样本均值是否存在显著差异的统计方法。广泛应用于各种场景,例如判断两组数据是否具有显著差异。使用T检验前,需确保数据符合正态分布,并且样本方差具有相似性。T检验有多种变体,包括独立样本T检验、配对样本T检验和单样本T检验,针对不同实验设计和数据类型选择适当方法至关重要。

       实现T检验的怎么查看漫画源码下载Python代码如下:

       python

       import numpy as np

       import scipy.stats as stats

       # 示例数据

       data1 = np.array([1, 2, 3, 4, 5])

       data2 = np.array([2, 3, 4, 5, 6])

       # 独立样本T检验

       t_statistic, p_value = stats.ttest_ind(data1, data2)

       print(f"T统计量:{ t_statistic}")

       print(f"显著性水平:{ p_value}")

       # 根据p值判断差异显著性

       if p_value < 0.:

        print("两个样本的均值存在显著差异")

       else:

        print("两个样本的均值无显著差异")

       运行上述代码,将输出T统计量和显著性水平。根据p值判断,若p值小于0.,则可认为两个样本的均值存在显著差异;否则,认为两者均值无显著差异。

       实现效果

       根据上述代码,执行T检验后,得到的输出信息如下:

       python

       T统计量:-0.

       显著性水平:0.

       根据输出结果,T统计量为-0.,显著性水平为0.。由于p值大于0.,我们无法得出两个样本均值存在显著差异的结论。因此,可以判断在置信水平为0.时,两个样本的均值无显著差异。

七爪源码:Python 中的数据预处理:准备好数据集的 4 个基本步骤

       Python 数据预处理四步骤指南

       数据预处理对于机器学习模型的精度至关重要。它确保数据的清洁度和一致性,尤其是在处理分类和数值数据时。下面将介绍准备数据集的四个关键步骤。

       首先,导入 NumPy 和 Pandas,通过.csv 文件加载数据,以可视化数据集。

       数据包含数值和分类变量,需将其分为特征和标签,以便使用scikit-learn进行预处理。

       1. 处理缺失值

       现实数据中常有缺失值,需妥善处理。使用SimpleImputer,通过missing_values参数指定缺失值,如使用均值(数值数据),并运用.fit和.transform方法处理。

       2. 编码分类变量

       分类数据需转换为数值,以便模型理解。如本例采用One Hot Encoding,为每个类别创建二进制特征。

       3. 编码因变量

       同样,标签(分类)也需编码,这里使用LabelEncoder,将标签值规范化为0到n_classes-1之间。

       4. 训练-测试拆分

       为了评估模型性能,将数据集分为训练集和测试集,便于模型应用和性能对比。

       通过以上步骤,数据预处理为模型开发奠定了基础,确保数据准备就绪。记得在实践中运用这些技巧。

分钟!用Python实现简单的人脸识别技术(附源码)

       Python实现简单的人脸识别技术,主要依赖于Python语言的胶水特性,通过调用特定的库包即可实现。这里介绍的是一种较为准确的实现方法。实现步骤包括准备分类器、引入相关包、创建模型、以及最后的人脸识别过程。首先,需确保正确区分人脸的分类器可用,可以使用预训练的模型以提高准确度。所用的包主要包括:CV2(OpenCV)用于图像识别与摄像头调用,os用于文件操作,numpy进行数学运算,PIL用于图像处理。

       为了实现人脸识别,需要执行代码以加载并使用分类器。执行“face_detector = cv2.CascadeClassifier(r'C:\Users\admin\Desktop\python\data\haarcascade_frontalface_default.xml')”时,确保目录名中无中文字符,以免引发错误。这样,程序就可以识别出目标对象。

       然后,选择合适的算法建立模型。本次使用的是OpenCV内置的FaceRecognizer类,包含三种人脸识别算法:eigenface、fisherface和LBPHFaceRecognizer。LBPH是一种纹理特征提取方式,可以反映出图像局部的纹理信息。

       创建一个Python文件(如trainner.py),用于编写数据集生成脚本,并在同目录下创建一个文件夹(如trainner)存放训练后的识别器。这一步让计算机识别出独特的人脸。

       接下来是识别阶段。通过检测、校验和输出实现识别过程,将此整合到一个统一的文件中。现在,程序可以识别并确认目标对象。

       通过其他组合,如集成检测与开机检测等功能,可以进一步扩展应用范围。实现这一过程后,你将掌握Python简单人脸识别技术。

       若遇到问题,首先确保使用Python 2.7版本,并通过pip安装numpy和对应版本的opencv。针对特定错误(如“module 'object' has no attribute 'face'”),使用pip install opencv-contrib-python解决。如有疑问或遇到其他问题,请随时联系博主获取帮助。