1.大数据架构系列:如何理解湖仓一体?
大数据架构系列:如何理解湖仓一体?
在年,腾讯的A/B Test团队启动了海外商业化版本ABetterChoice的建设。ABetterChoice是一款全新的SaaS产品,它将腾讯内部积累的优秀实验能力进行抽象,并基于海外合规、多云环境适配等复杂要求,化妆游戏源码进行改造,以满足海外用户需求的先进实验产品。ABetterChoice通过StarRocks实现了计算引擎的统一,使实验计算层规范化,计算SQL统一化,提升了整体应用服务的可复用性。它已接入包括王者荣耀海外版、PUBG Mobile、Ubisoft全境封锁等业务。ABetterChoice官网为ABetterChoice.ai。
A/B Test的介绍和应用案例。A/B测试源自生物医学中的双盲测试,能够运用在互联网领域,为战略决策、产品迭代、自在源码屋新策略验证提供科学依据。以游戏生态为例,实验能够深度挖掘不同玩家圈层的特征和诉求,进行游戏产品的改造与优化,提升玩家口碑和核心运营指标。
关于腾讯的A/B Test。在年,腾讯PCG大数据平台部科学实验团队基于内部沉淀的A/B Test平台启动了ABetterChoice的建设,作为一款能够赋能业务增长的数据产品,开始进行海外版本的卖源码后手改造筹备工作,提供一套对齐海外竞品、突出腾讯A/B特性的优秀SaaS产品。ABetterChoice已接入王者荣耀海外版、PUBG Mobile、Ubisoft全境封锁等业务。
出海原因和用户诉求。在腾讯游戏出海以及海外二方工作室快速发展的背景下,A/B实验平台作为一款增长数据产品,开始进行海外版本改造,提供一套支持海外数据合规、趣工具源码多云环境的通用化数据底座,满足不同业务背景和诉求。
架构现状与问题。腾讯A/B Test架构采用Kappa架构,支持数据流批上报和多维分析,使用StarRocks的存算一体模式,但在多表Join计算场景下资源耗费大,集群本地存储使用SSD,随着业务数据生命周期延长成本增加,且与腾讯云深度绑定,共享白板源码不支持海外二方工作室的数据需求。
实验架构改造。实验数据入湖,架构改造基于主流公有云,采用湖仓一体、存算分离架构,选用StarRocks作为OLAP引擎,满足数据合规和多租户接入。在腾讯云引入TBDS,海外公有云引入Databricks,提供数据入湖通道。湖上建仓,需要通用的OLAP引擎支持湖仓一体生态,同时具备本地存储+计算能力。StarRocks在3.1版本后支持Delta Lake和Iceberg,实现高性能查询和真正的湖仓融合。
数据冷热分离。在实验场景中,不同用户对数据存储周期不同,StarRocks会将最近天数据存储在本地SSD,超过天的数据自动降冷至对象存储,通过数据湖调度维护表Meta信息和状态。冷热数据分区查询,采用BE+CN混合查询模式,调整执行计划,减少数据交换过程,提升查询性能。
多租户隔离。A/B实验是典型的多租户场景,针对不同业务的计算资源需求和数据合规要求,设计一套集查询引擎、数据湖和对象存储的多租户隔离方案。查询引擎层实现平等资源下发,数据湖层通过Databricks Unity Catalog屏蔽权限,对象存储层实现地域隔离和用户权限管控。
总结与展望。基于StarRocks的ABetterChoice在公有云实现落地,已完成接入验证工作。未来计划深化StarRocks在多维即席查询的性能优化、湖仓一体架构的定制化改造,形成一套立足海外场景的基于StarRocks的湖仓一体生态建设经验。更多信息关注StarRocks公众号和源码GitHub,欢迎交流。