皮皮网
皮皮网
答题ap源码

【ai起名程序源码】【雷池线指标源码】【进退自如源码】scrapy 下载源码_scrapy源码分析

时间:2025-01-24 09:51:03 分类:百科 编辑:虚拟交易站源码
1.Scrapy对接Selenium
2.[scrapy]scrapy-redis快速上手/scrapy爬虫分布式改造
3.Python爬虫如何写?
4.python安装scrapy,下载所需要安装的源码源码包都安装好了,但是分析在最后安装scrapy时,老是下载出现错误

scrapy 下载源码_scrapy源码分析

Scrapy对接Selenium

       Scrapy抓取网页的方式与Requests库相似,主要通过HTTP请求。源码源码然而,分析ai起名程序源码遇到JavaScript渲染的下载页面,Scrapy就无法直接获取数据。源码源码针对这种情况,分析有两种常用处理方式:一是下载分析Ajax请求,抓取其对应的源码源码接口数据;二是利用Selenium或Splash模拟浏览器行为,获取页面最终展示的分析雷池线指标源码结果。在Scrapy中,下载如果能与Selenium结合,源码源码就能处理各种网站的分析抓取。

       本文将介绍如何在Scrapy框架中集成Selenium,以抓取淘宝商品信息为例。首先,创建一个名为scrapyseleniumtest的新项目,并在Spider中进行设置。将ROBOTSTXT_OBEY设置为False,定义ProductItem,并在start_requests()方法中生成包含搜索关键字和分页页码的进退自如源码请求。

       在Middleware中,我们实现process_request()方法,利用PhantomJS加载URL并渲染页面。当接收到Request时,通过PhantomJS加载对应的URL,获取页面源代码并构造一个HtmlResponse对象。这样,Scrapy不再直接下载页面,而是通过Middleware将Response传递给Spider进行解析。

       Middleware的process_request()方法会触发其他Middleware的处理,然后将Response传递给Spider的极点买卖指标源码回调函数。在回调函数中,使用XPath解析网页内容,构造ProductItem对象,并通过Item Pipeline将结果存储到MongoDB。

       在settings.py中开启Middleware和Item Pipeline的调用,最后通过命令行启动爬虫。运行后,会看到MongoDB中存储的抓取结果。

       整个过程通过Scrapy与Selenium的集成,实现了对JavaScript渲染页面的抓取,代码示例可在GitHub上找到。如何看vba源码作者崔庆才为Python爱好者社区的作者,如需进一步交流,可以添加其个人微信。

[scrapy]scrapy-redis快速上手/scrapy爬虫分布式改造

       本篇文章旨在快速上手使用scrapy-redis将Scrapy爬虫改造为分布式安装。首先,确保已安装所需python库和数据库,注意版本问题,避免过低。

       在配置redis时,修改scrapy项目中的setting.py文件,添加代码以适应分布式需求。对于item pipeline,您可以按照原有逻辑存储数据,或选择先使用redis存储,之后统一转移,例如直接存入mysql。

       修改spiders目录下的爬虫文件,将类继承改为Redisspider。若需让slave直接将数据存储至master数据库,别忘了调整slave的数据库连接设置。

       启动分布式爬虫,通过命令scrapy crawl xxxxx启动master,crawl xxxxx启动slave。提供了一个demo源码供参考和修改使用,代码链接:github.com/qqxx/scr...-demo。在遇到问题时,欢迎留言提问或通过邮箱qqxx@gmail.com寻求帮助。

       参考资源:cnblogs.com/zjl6/p/...

Python爬虫如何写?

       å…ˆæ£€æŸ¥æ˜¯å¦æœ‰API

       API是网站官方提供的数据接口,如果通过调用API采集数据,则相当于在网站允许的范围内采集,这样既不会有道德法律风险,也没有网站故意设置的障碍;不过调用API接口的访问则处于网站的控制中,网站可以用来收费,可以用来限制访问上限等。整体来看,如果数据采集的需求并不是很独特,那么有API则应优先采用调用API的方式。

       æ•°æ®ç»“构分析和数据存储

       çˆ¬è™«éœ€æ±‚要十分清晰,具体表现为需要哪些字段,这些字段可以是网页上现有的,也可以是根据网页上现有的字段进一步计算的,这些字段如何构建表,多张表如何连接等。值得一提的是,确定字段环节,不要只看少量的网页,因为单个网页可以缺少别的同类网页的字段,这既有可能是由于网站的问题,也可能是用户行为的差异,只有多观察一些网页才能综合抽象出具有普适性的关键字段——这并不是几分钟看几个网页就可以决定的简单事情,如果遇上了那种臃肿、混乱的网站,可能坑非常多。

       å¯¹äºŽå¤§è§„模爬虫,除了本身要采集的数据外,其他重要的中间数据(比如页面Id或者url)也建议存储下来,这样可以不必每次重新爬取id。

       æ•°æ®åº“并没有固定的选择,本质仍是将Python里的数据写到库里,可以选择关系型数据库MySQL等,也可以选择非关系型数据库MongoDB等;对于普通的结构化数据一般存在关系型数据库即可。sqlalchemy是一个成熟好用的数据库连接框架,其引擎可与Pandas配套使用,把数据处理和数据存储连接起来,一气呵成。

       æ•°æ®æµåˆ†æž

       å¯¹äºŽè¦æ‰¹é‡çˆ¬å–的网页,往上一层,看它的入口在哪里;这个是根据采集范围来确定入口,比如若只想爬一个地区的数据,那从该地区的主页切入即可;但若想爬全国数据,则应更往上一层,从全国的入口切入。一般的网站网页都以树状结构为主,找到切入点作为根节点一层层往里进入即可。

       å€¼å¾—注意的一点是,一般网站都不会直接把全量的数据做成列表给你一页页往下翻直到遍历完数据,比如链家上面很清楚地写着有套二手房,但是它只给页,每页个,如果直接这么切入只能访问个,远远低于真实数据量;因此先切片,再整合的数据思维可以获得更大的数据量。显然页是系统设定,只要超过个就只显示页,因此可以通过其他的筛选条件不断细分,只到筛选结果小于等于页就表示该条件下没有缺漏;最后把各种条件下的筛选结果集合在一起,就能够尽可能地还原真实数据量。

       æ˜Žç¡®äº†å¤§è§„模爬虫的数据流动机制,下一步就是针对单个网页进行解析,然后把这个模式复制到整体。对于单个网页,采用抓包工具可以查看它的请求方式,是get还是post,有没有提交表单,欲采集的数据是写入源代码里还是通过AJAX调用JSON数据。

       åŒæ ·çš„道理,不能只看一个页面,要观察多个页面,因为批量爬虫要弄清这些大量页面url以及参数的规律,以便可以自动构造;有的网站的url以及关键参数是加密的,这样就悲剧了,不能靠着明显的逻辑直接构造,这种情况下要批量爬虫,要么找到它加密的js代码,在爬虫代码上加入从明文到密码的加密过程;要么采用下文所述的模拟浏览器的方式。

       æ•°æ®é‡‡é›†

       ä¹‹å‰ç”¨R做爬虫,不要笑,R的确可以做爬虫工作;但在爬虫方面,Python显然优势更明显,受众更广,这得益于其成熟的爬虫框架,以及其他的在计算机系统上更好的性能。scrapy是一个成熟的爬虫框架,直接往里套用就好,比较适合新手学习;requests是一个比原生的urllib包更简洁强大的包,适合作定制化的爬虫功能。requests主要提供一个基本访问功能,把网页的源代码给download下来。一般而言,只要加上跟浏览器同样的Requests Headers参数,就可以正常访问,status_code为,并成功得到网页源代码;但是也有某些反爬虫较为严格的网站,这么直接访问会被禁止;或者说status为也不会返回正常的网页源码,而是要求写验证码的js脚本等。

       ä¸‹è½½åˆ°äº†æºç ä¹‹åŽï¼Œå¦‚果数据就在源码中,这种情况是最简单的,这就表示已经成功获取到了数据,剩下的无非就是数据提取、清洗、入库。但若网页上有,然而源代码里没有的,就表示数据写在其他地方,一般而言是通过AJAX异步加载JSON数据,从XHR中找即可找到;如果这样还找不到,那就需要去解析js脚本了。

       è§£æžå·¥å…·

       æºç ä¸‹è½½åŽï¼Œå°±æ˜¯è§£æžæ•°æ®äº†ï¼Œå¸¸ç”¨çš„有两种方法,一种是用BeautifulSoup对树状HTML进行解析,另一种是通过正则表达式从文本中抽取数据。

       BeautifulSoup比较简单,支持Xpath和CSSSelector两种途径,而且像Chrome这类浏览器一般都已经把各个结点的Xpath或者CSSSelector标记好了,直接复制即可。以CSSSelector为例,可以选择tag、id、class等多种方式进行定位选择,如果有id建议选id,因为根据HTML语法,一个id只能绑定一个标签。

       æ­£åˆ™è¡¨è¾¾å¼å¾ˆå¼ºå¤§ï¼Œä½†æž„造起来有点复杂,需要专门去学习。因为下载下来的源码格式就是字符串,所以正则表达式可以大显身手,而且处理速度很快。

       å¯¹äºŽHTML结构固定,即同样的字段处tag、id和class名称都相同,采用BeautifulSoup解析是一种简单高效的方案,但有的网站混乱,同样的数据在不同页面间HTML结构不同,这种情况下BeautifulSoup就不太好使;如果数据本身格式固定,则用正则表达式更方便。比如以下的例子,这两个都是深圳地区某个地方的经度,但一个页面的class是long,一个页面的class是longitude,根据class来选择就没办法同时满足2个,但只要注意到深圳地区的经度都是介于到之间的浮点数,就可以通过正则表达式"[3-4].\d+"来使两个都满足。

       æ•°æ®æ•´ç†

       ä¸€èˆ¬è€Œè¨€ï¼Œçˆ¬ä¸‹æ¥çš„原始数据都不是清洁的,所以在入库前要先整理;由于大部分都是字符串,所以主要也就是字符串的处理方式了。

       å­—符串自带的方法可以满足大部分简单的处理需求,比如strip可以去掉首尾不需要的字符或者换行符等,replace可以将指定部分替换成需要的部分,split可以在指定部分分割然后截取一部分。

       å¦‚果字符串处理的需求太复杂以致常规的字符串处理方法不好解决,那就要请出正则表达式这个大杀器。

       Pandas是Python中常用的数据处理模块,虽然作为一个从R转过来的人一直觉得这个模仿R的包实在是太难用了。Pandas不仅可以进行向量化处理、筛选、分组、计算,还能够整合成DataFrame,将采集的数据整合成一张表,呈现最终的存储效果。

       å†™å…¥æ•°æ®åº“

       å¦‚果只是中小规模的爬虫,可以把最后的爬虫结果汇合成一张表,最后导出成一张表格以便后续使用;但对于表数量多、单张表容量大的大规模爬虫,再导出成一堆零散的表就不合适了,肯定还是要放在数据库中,既方便存储,也方便进一步整理。

       å†™å…¥æ•°æ®åº“有两种方法,一种是通过Pandas的DataFrame自带的to_sql方法,好处是自动建表,对于对表结构没有严格要求的情况下可以采用这种方式,不过值得一提的是,如果是多行的DataFrame可以直接插入不加索引,但若只有一行就要加索引否则报错,虽然这个认为不太合理;另一种是利用数据库引擎来执行SQL语句,这种情况下要先自己建表,虽然多了一步,但是表结构完全是自己控制之下。Pandas与SQL都可以用来建表、整理数据,结合起来使用效率更高。

python安装scrapy,所需要安装的包都安装好了,但是在最后安装scrapy时,老是出现错误

       scapy安装的错误有几种类型。

       因为网络限制,你无法自动下载依赖的库

       因为版本冲突问题,导致你安装scapy时无法完成安装,或者是安装无法正确使用

       因为编译的位数不同位和位不同,导致的问题

       解决办法:

       简单的解决办法。如果scrapy对你很重要。重新安装一套python2.7然后从头安装scrapy,可以从pypi网站上下载。也可以从unofficial来源,一口气安装好的包。

       耐心的解决办法。把scrapy的源码拿过来,执行python setup.py install,遇到哪个包不好用,就替换掉。办法是将那个包的源代码拿过来,先删除site-packages里的相应包,再手工执行python setup.py install。要有心理准备,很可能需要vc++ 的编译器。

       最简单的办法,使用pip install scrapy。 如果你是在ubuntu下面apt-get install python-scrapy就搞定了。

       关于爬虫框架,你可以看下这本书,里面很详细的讲解到了这块的东西,希望能够解决你在学习Python的过程中遇到的问题

本文地址:http://04.net.cn/news/85a392695988.html

copyright © 2016 powered by 皮皮网   sitemap