爬虫工具--fiddler
一、抓包工具
1.1 浏览器自带抓包功能,网站网站通过右键审查元素,源码源码点击network,爬虫爬虫屏幕日历源码点击请求,网站网站右边栏展示请求详细信息:request、源码源码headers、爬虫爬虫response。网站网站以搜狗浏览器为例,源码源码任意点击加载选项,爬虫爬虫查看get参数。网站网站
1.2 Fiddler,源码源码一个HTTP协议调试代理工具。爬虫爬虫它能记录并检查电脑和互联网之间的所有HTTP通信,收集所有传输的数据,如cookie、html、js、css文件,作为中介连接电脑与网络。
二、Fiddler的使用
2.1 下载并安装Fiddler,访问官网下载页面,填写信息后下载安装包,按照常规步骤进行安装。
2.2 配置Fiddler,打开工具选项,选择HTTPS捕获、解密HTTPS流量等功能,完成配置后重启Fiddler。
三、Fiddler的使用
3.1 在Fiddler中查看JSON、CSS、JS格式的数据。停止抓取:文件菜单中选择捕获,取消勾选。点击请求,右边选择inspectors。
3.2 HTTP请求信息:Raw显示请求头部详细信息,Webforms显示参数,如query_string、formdata。
3.3 HTTP响应信息:首先点击**条解码,Raw显示响应所有信息,bbiboll 源码Headers显示响应头,Json显示接口返回内容。
3.4 左下黑色框输入指令,用于过滤特定请求,如清除所有请求、选择特定格式请求等。
四、Urllib库初识
4.1 Urllib库用于模拟浏览器发送请求,是Python内置库。
4.2 字符串与字节之间的转化:字符串转字节使用Encode(),字节转字符串使用Decode(),默认编码为utf-8。
4.3 urllib.request属性:urlopen(url)返回响应对象位置,urlretrieve(url, filename)下载文件。
4.4 urllib.parse构建url:quote编码中文为%xxxx形式,unquote解码%xxxx为中文,urlencode将字典拼接为query_string并编码。
五、响应处理
5.1 read()读取响应内容,返回字节类型源码,geturl()获取请求的url,getheaders()获取头部信息列表,getcode()获取状态码,readlines()按行读取返回列表。
六、GET方式请求
6.1 无错误代码,但打开Fiddler时可能会报错,因为Fiddler表明Python访问被拒绝,需要添加头部信息,如伪装User-Agent为浏览器。
七、构建请求头部
7.1 认识请求头部信息,如Accept-encoding、User-agent。了解不同浏览器的User-agent信息,伪装自己的User-agent以通过反爬机制。
8.1 构建请求对象,使用urllib.request.Request(url=url, headers=headers)。完成以上步骤,实现基于Fiddler和Urllib库的网络数据抓取与请求操作。
3.网络爬虫——Requests模块get请求与实战
网络爬虫入门:掌握Requests模块与GET请求实践
学习网络爬虫的第一步,是了解如何使用Python的requests库获取网页源代码。本文将带你从安装requests库开始,逐步掌握GET请求的使用方法,让你能够轻松爬取网站数据。strip 源码
先来了解一下urllib模块,它是Python内置的HTTP请求库,包含四个主要模块,提供基础的HTTP功能。
接着,介绍requests模块的使用。首先,通过pip命令安装requests库,安装成功后,你就可以利用它发送HTTP请求了。
在实际操作中,我们通常需要使用GET请求来获取网页数据。当数据在网页链接中时,通过requests.get()函数发送GET请求,获取HTML内容。此外,请求头和状态码是了解请求过程的关键信息。请求头包含了HTTP请求的一些元信息,如请求方法、地址等,而状态码则帮助判断请求是否成功。
在爬取网站数据时,请求头扮演着重要的角色。它包括了用户代理、Cookie等信息,让服务器更好地理解请求,确保数据获取过程顺利进行。
通过代码示例,我们可以清晰地看到如何通过requests模块获取网页数据。比如,发送GET请求到特定URL,并解析响应状态码、请求头和HTML内容。这为后续的数据解析和处理打下了基础。
当数据获取成功后,我们可以通过编写代码将HTML内容保存到本地文件,便于后续分析和使用。在实际爬虫项目中,合理的文件存储策略至关重要,确保数据安全和易于访问。
最后,通过简单的案例演示了如何在网页中搜索和获取特定数据。尽管在本文中我们没有详细讲解数据解析技术,但在后续的章节中,你将学习到更深入的email源码数据提取方法,实现精准的数据获取。
今天的学习就到这里,希望这些基础知识能为你的网络爬虫之旅铺平道路。如果你对网络爬虫感兴趣,期待你的持续关注。更多内容敬请期待下一期!
教你写爬虫用Java爬虫爬取百度搜索结果!可爬w+条!
教你写爬虫用Java爬取百度搜索结果的实战指南
在本文中,我们将学习如何利用Java编写爬虫,实现对百度搜索结果的抓取,最高可达万条数据。首先,目标是获取搜索结果中的五个关键信息:标题、原文链接、链接来源、简介和发布时间。 实现这一目标的关键技术栈包括Puppeteer(网页自动化工具)、Jsoup(浏览器元素解析器)以及Mybatis-Plus(数据存储库)。在爬取过程中,我们首先分析百度搜索结果的网页结构,通过控制台查看,发现包含所需信息的元素位于class为"result c-container xpath-log new-pmd"的div标签中。 爬虫的核心步骤包括:1)初始化浏览器并打开百度搜索页面;2)模拟用户输入搜索关键词并点击搜索;3)使用代码解析页面,获取每个搜索结果的详细信息;4)重复此过程,处理多个关键词和额外的逻辑,如随机等待、数据保存等。通过这样的通用方法,我们实现了高效的数据抓取。 总结来说,爬虫的核心就是模仿人类操作,获取网络上的数据。Puppeteer通过模拟人工点击获取信息,而我们的目标是更有效地获取并处理数据。如果你对完整源码感兴趣,可以在公众号获取包含爬虫代码、数据库脚本和网页结构分析的案例资料。网络搜索引擎为什么又要叫爬虫?
简言之,爬虫可以帮助我们把网站上的信息快速提取并保存下来。
我们可以把互联网比作一张大网,而爬虫(即网络爬虫)便是在网上爬行的蜘蛛(Spider)。把网上的节点比作一个个网页,爬虫爬到这个节点就相当于访问了该网页,就能把网页上的ccbook源码信息提取出来。我们可以把节点间的连线比作网页与网页之间的链接关系,这样蜘蛛通过一个节点后,可以顺着节点连线继续爬行到达下一个节点,即通过一个网页继续获取后续的网页,这样整个网的节点便可以被蜘蛛全部爬行到,网页的数据就可以被抓取下来了。
通过上面的简单了解,你可能大致了解爬虫能够做什么了,但是一般要学一个东西,我们得知道学这个东西是来做什么的吧!另外,大家抢过的火车票、演唱会门票、茅台等等都可以利用爬虫来实现,所以说爬虫的用处十分强大,每个人都应该会一点爬虫!
我们常见的爬虫有通用爬虫和聚焦爬虫。
时不时冒出一两个因为爬虫入狱的新闻,是不是爬虫是违法的呀,爬虫目前来说是灰色地带的东西,所以大家还是要区分好小人和君子,避免牢底坐穿!网上有很多关于爬虫的案件,就不一一截图,大家自己上网搜索吧。有朋友说,“为什么我学个爬虫都被抓,我犯法了吗?” 这个目前还真的不好说,主要是什么,目前爬虫相关的就只有一个网站的robots协议,这个robots是网站跟爬虫间的协议,用简单直接的txt格式文本方式告诉对应的爬虫被允许的权限,也就是说robots.txt是搜索引擎访问网站的时候要查看的第一个文件。当一个搜索蜘蛛访问一个站点时,它首先会检查该站点根目录下是否存在robots.txt,如果存在,搜索机器人就会按照该文件中的内容来确定访问的范围;如果该文件不存在,所有的搜索蜘蛛将能够访问网站上所有没有被口令保护的页面。也就是说robots协议是针对于通用爬虫而言的,而聚焦爬虫(就是我们平常写的爬虫程序)则没有一个严格法律说禁止什么的,但也没有说允许,所以目前的爬虫就处在了一个灰色地带,这个robots协议也就仅仅起到了一个”防君子不防小人“的作用,而很多情况下是真的不好判定你到底是违法还是不违法的。所以大家使用爬虫尽量不从事商业性的活动吧!好消息是,据说有关部门正在起草爬虫法,不久便会颁布,后续就可以按照这个标准来进行了。
获取网页的源代码后,接下来就是分析网页的源代码,从中提取我们想要的数据。首先,最通用的方法便是采用正则表达式提取,这是一个万能的方法,但是在构造正则表达式时比较复杂且容易出错。另外,由于网页的结构有一定的规则,所以还有一些根据网页节点属性、CSS 选择器或 XPath 来提取网页信息的库,如 BeautifulSoup4、pyquery、lxml 等。使用这些库,我们可以高效快速地从中提取网页信息,如节点的属性、文本值等。提取信息是爬虫非常重要的部分,它可以使杂乱的数据变得条理、清晰,以便我们后续处理和分析数据。
经过本节内容的讲解,大家肯定对爬虫有了基本了解,接下来让我们一起迈进学习爬虫的大门吧!相关阅读:天学会Python爬虫系列文章
爬虫是什么意思
爬虫的意思是指通过网络抓取、分析和收集数据的程序或脚本。爬虫,又称为网络爬虫,是一种自动化程序,能够在互联网上按照一定的规则和算法,自动抓取、分析和收集数据。以下是关于爬虫的详细解释:
1. 爬虫的基本定义
爬虫是一种按照既定规则自动抓取互联网信息的程序。这些规则包括访问的网址、抓取的数据内容、如何解析数据等。通过模拟人的操作,爬虫能够自动访问网站并获取其中的信息。
2. 爬虫的工作原理
爬虫通过发送HTTP请求访问网站,获取网页的源代码,然后解析这些源代码以提取所需的数据。这些数据可能是文本、、音频、视频等多种形式。爬虫可以针对不同的网站和不同的需求进行定制,以获取特定的信息。
3. 爬虫的应用场景
爬虫在互联网行业有广泛的应用。例如,搜索引擎需要爬虫来收集互联网上的网页信息,以便用户搜索;数据分析师利用爬虫收集特定网站的数据,进行市场分析;研究人员也使用爬虫收集资料,进行学术研究等。
4. 爬虫的注意事项
在使用爬虫时,需要遵守网站的访问规则,尊重网站的数据使用协议,避免过度抓取给网站服务器带来压力。同时,要注意遵守法律法规,不抓取涉及个人隐私、版权保护等敏感信息。合理、合法地使用爬虫技术,才能充分发挥其价值和作用。
总的来说,爬虫是一种重要的网络数据收集和分析工具,但在使用时也需要遵守规则和法规,以确保其合法性和合理性。
爬虫为什么抓不到网页源码
有可能是因为网页采用了动态网页技术,如AJAX、JavaScript等,导致浏览器中看到的网页内容与通过爬虫抓取的网页源代码不同。
动态网页技术可以使网页在加载后通过JavaScript代码动态地修改或添加页面内容,而这些修改和添加的内容是在浏览器中执行的,而不是在服务器端。因此,如果使用传统的爬虫工具,只能获取到最初加载的网页源代码,而无法获取动态生成的内容。
解决这个问题的方法是使用支持JavaScript渲染的爬虫工具,例如Selenium和Puppeteer。这些工具可以模拟浏览器行为,实现动态网页的加载和渲染,从而获取完整的网页内容。
另外,有些网站也可能采用反爬虫技术,例如IP封禁、验证码、限制访问频率等,这些技术也可能导致爬虫抓取的网页源代码与浏览器中看到的不一样。针对这些反爬虫技术,需要使用相应的反反爬虫策略。
爬虫什么意思
爬虫的意思是指网络爬虫,是一种自动抓取互联网上信息的程序或脚本。爬虫的具体解释如下:
1. 爬虫的基本概念
爬虫,又称为网络爬虫,是一种自动化程序,能够在互联网上自动抓取、分析和收集数据。它们按照一定的规则和算法,遍历互联网上的网页,收集数据并将其存储在本地。
2. 爬虫的工作原理
爬虫通过发送网络请求,模拟人在浏览器上的操作,访问各个网页。通过解析网页的源代码,提取出所需要的数据。这些数据可以是文字、、链接等。爬虫在抓取数据的过程中,会根据预先设定的规则,不断地从当前页面跳转到其他页面,实现数据的批量采集。
3. 爬虫的应用领域
爬虫在多个领域都有广泛的应用。在搜索引擎中,爬虫负责收集互联网上的信息,以便用户进行搜索。在数据挖掘、竞品分析、价格监测等领域,爬虫也发挥着重要作用。同时,爬虫还可以用于网站的数据备份、网站地图的生成等。
4. 注意事项
使用爬虫时需要遵守一定的规则和道德准则。必须尊重网站的版权和隐私政策,不得对网站造成过度负担或侵犯其合法权益。此外,要注意遵守相关法律法规,避免非法获取和使用数据。
以上就是对爬虫的解释。
Python网络爬虫-APP端爬虫
一、环境安装
1.1 模拟器安装
借助模拟器进行APP端调试,通过下载安装可实现。推荐使用夜神模拟器(yeshen.com/)或网易MuMu模拟器(mumu..com/)。
1.2 SDK安装
提供多种下载渠道,首选官网下载(developer.android.com/s...)或第三方下载平台(androiddevtools.cn/)。使用SDK Manager.exe安装工具,选择需要的工具,如Build-tools和特定Android版本,同时勾选Extras中的选项,最后点击Install安装。注意,安装过程可能持续数小时。配置环境变量,设置ANDROID_HOME为sdk安装目录,并将平台工具和工具路径添加到Path环境变量中。
1.3 Fiddler安装
直接从官网下载安装(telerik.com/download/fi...)以获取puters connect选项开启。
2.2 模拟器配置
在模拟器设置中,手动更改代理设置,输入本机IP和Fiddler端口,完成与Fiddler的代理连接。
三、移动端自动化控制
3.1 APK包名获取
通过adb命令获取apk包名,确保adb服务启动并连接模拟器,然后在模拟器中获取所需app的包名和Activity。
3.2 Appium使用
使用appium的python包,启动appium服务,编写示例代码操作模拟器,并使用uiautomatorviewer获取元素的Xpath路径。
四、利用mitmproxy抓取存储数据
4.1 基本原理
mitmproxy提供命令行接口mitmdump,用于处理抓取的数据,并将其存储到数据库中,同时支持Python脚本处理请求和响应。
4.2 抓取步骤
使用fiddler分析请求,然后通过mitmdump拦截并保存数据至MySQL数据库。
五、APK脱壳反编译
5.1 脱壳
使用Xposed框架安装FDex2工具,通过Hook ClassLoader方法脱壳APK。推荐从网络下载并安装FDex2工具。
5.2 APK反编译
使用apktool反编译apk文件以获取静态资源,而dex2jar则将.dex文件转换为Java源代码。此过程需谨慎处理多个.dex文件。
5.3 JAD-反编译class文件
借助GitHub上的JAD工具将.class文件反编译为Java源代码,便于阅读和理解。
网络爬虫基本原理介绍
网络爬虫(也称为网页蜘蛛、网络机器人等),是一种按照一定规则自动抓取万维网信息的程序或脚本。其主要功能是帮助用户快速获取所需信息,节省手动搜索时间。爬虫工作流程包括获取网页源代码、解析内容以及存储数据。应用领域广泛,如搜索引擎网页抓取、数据挖掘、网站监测等。网络爬虫依据目的和工作方式可分为通用爬虫、聚焦爬虫和增量式爬虫。通用爬虫全面抓取互联网所有网页,形成内容备份;聚焦爬虫专注于特定主题网页的抓取;增量式爬虫定期更新已抓取网页,确保信息实时性。
编写网络爬虫需具备编程技能和了解相关法律法规及道德规范,尊重网站权益,避免干扰。基本原理包括HTTP请求、HTML解析和数据存储。案例通常使用Python实现,如利用requests和BeautifulSoup库抓取网页内容、提取标题和链接。实际应用需考虑链接有效性、效率优化和服务器封禁问题。遵守法律法规,尊重网站权益至关重要。
网络爬虫流程包括发送HTTP请求、解析HTML响应、提取数据和存储。流程图直观展示了爬虫工作流程。在运行过程中,可能出现HTTP请求失败、内容解析错误和重复抓取等问题。正确处理这些问题对于提高爬虫性能和用户体验至关重要。
网络爬虫在不断发展的过程中,需要不断优化以适应新的网络环境和技术挑战。遵守伦理原则,合理使用网络爬虫技术,是确保其长期有效性和可持续发展的关键。
2024-12-24 08:20
2024-12-24 08:12
2024-12-24 07:29
2024-12-24 06:36
2024-12-24 06:22