【日上溯源码】【html css js 源码】【linux 修改内核源码】map的底层源码_map的底层是什么

时间:2025-01-24 05:11:15 编辑:蹦极指标源码 来源:worldcount源码

1.hashmap底层实现原理
2.Golang中map的的底层p的底层遍历顺序到底是怎样的?
3.深入学习 golang 中 map 底层实现
4.三万字带你认识 Go 底层 map 的实现
5.JDK成长记7:3张图搞懂HashMap底层原理!
6.Java面试问题:HashMap的源码底层原理

map的底层源码_map的底层是什么

hashmap底层实现原理

       hashmap底层实现原理是SortedMap接口能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator遍历TreeMap时,得到的记录是排过序的。

       å¦‚果使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,否则会在运行时抛出java.lang.ClassCastException类型的异常。

       Hashtable是遗留类,很多映射的常用功能与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的,任一时间只有一个线程能写Hashtable

       ä»Žç»“构实现来讲,HashMap是:数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的。

扩展资料

       ä»Žæºç å¯çŸ¥ï¼ŒHashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组。Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对),除了K,V,还包含hash和next。

       HashMap就是使用哈希表来存储的。哈希表为解决冲突,采用链地址法来解决问题,链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上。

       å¦‚果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。

Golang中map的遍历顺序到底是怎样的?

       在Golang中,对map的的底层p的底层多次遍历所得序列可能不同。这一设计考虑是源码为了防止开发者误以为每次遍历map都会得到稳定的输出序列,从而依赖于这一特性进行开发,的底层p的底层导致潜在的源码日上溯源码bug。

       当使用range循环遍历map时,的底层p的底层迭代顺序未指定,源码并且不能保证在每次迭代中相同。的底层p的底层自Go 1.0版本起,源码运行时会随机化map的的底层p的底层迭代顺序。开发者最初依赖于Go早期版本中稳定的源码迭代顺序,但这种顺序在不同实现之间有所差异,的底层p的底层导致了可移植性问题。源码如果需要稳定的的底层p的底层迭代顺序,必须维护一个单独的数据结构来指定该顺序。

       这种特性是如何实现的?让我们看看源代码(省略无关细节):

       源码显示,map底层通过fastrand函数生成随机数r,然后通过r进行与操作计算出startBucket和offset,再调用mapiternext进行遍历。因此,每次遍历map的起点都是随机的,从而导致不同的输出序列。

       在许多博客和文章中,都说map的遍历是随机选择一个起点然后开始遍历的,只有少数提到了遍历顺序的,也都是按照bucket和cell的顺序依次遍历。这时,你可能会产生疑问:如果是按照bucket和cell的顺序遍历,那么起点相同,我们得到的序列一定就相同吗?

       接下来,我将展示一段代码:

       注意,我没有直接使用fmt打印key值,因为fmt可能会对map进行排序。你可以在 这里查看排序规则。

       下面是我某一次的运行结果:

       为什么会这样?明明都是从2开始遍历,却得到了不同的遍历序列?

       我重新阅读了mapiternext的源码,终于找到了原因。以下代码已省略无关细节:

       这段代码的逻辑是对于每个新访问的bucket,i在0到bucketCnt(值为8)之间迭代,然后通过offi := (i + it.offset) & (bucketCnt - 1)计算出offi,从而确定我们要访问的cell的位置。到这里,我们已经找到了答案:bucket的顺序确实是一个一个去遍历的,但是每次访问一个新的bucket时,我们并不是从0号cell开始访问,而是从offset对应的cell开始访问的!

       以我上面程序的后两行输出为例,第二行的情况可能是这样的(为了方便理解,我直接把key值放在cell中了):

       这样去遍历,得到的序列自然是:2 7 0 1 3 4 5 6 8 9

       而第三行的输出,可能是下面这样的情形:

       这里offset为0,而0号cell是空的,所以输出的第一个key仍然是2,但这不代表起点是2所在的cell!这样,当我们访问Bucket 0时,就是从0号cell开始访问,于是得到的输出序列为:

       2 7 8 9 0 1 3 4 5 6

深入学习 golang 中 map 底层实现

       map 是 golang 中常用的数据结构,使用起来较为简单,但要深入理解其工作原理,需要查看源码。html css js 源码

       本文从结构和操作入手,详细分析 golang 中 map 的实现原理。

       golang 版本:go1.. linux/amd

       数据结构:本文主要讲解 golang 中 map 结构的原理,不涉及哈希表数据结构。

       hmap:使用 make 创建 map 时,实际上创建的是 hmap 结构。

       bmap:bmap 是哈希桶,包含 tophash、key、value 和溢出桶指针。

       tophash 用于保存桶中 key 对应 hash 值的高 8 位,提高查找效率。

       mapextra:overflow 字段用于指向溢出桶地址,当 key 和 value 中不包含指针时,overflow 是 uintptr 类型,包含指针时是 unsafe.Pointer 类型。

       创建:通常使用三种方式创建 map:makemap_small、makemap 和 makemap。

       makemap_small:当 hint 不超过 8 时,调用此函数创建 map。

       makemap:调用 makemap 完成内存分配。

       makemap:当通过 make 创建 map 且 hint 大于 8 时,调用此函数进行实际创建工作。

       哈希:golang 中 map 利用哈希函数进行查找优化。

       key 的哈希值分为低位和高位两部分,低位用于确定 key 所在的桶序号,高位用于初步确定 key 是否在桶中。

       写入:map 的写入操作通过 mapassign 函数完成。

       读取:map 的读取操作通常有以下两种形式:mapaccess1 和 mapaccess2。

       删除:map 的删除操作通过 delete 关键字完成。

       清空:golang 中没有提供 clear 关键字清空 map,可以通过创建新 map 或迭代+删除的方式清空。

       扩容:当负载因子过高或 map 中溢出桶过多时,会触发扩容。

       golang 将扩容分为两种:增量扩容和等量扩容。

       遍历:map 的遍历可以通过 for-range 实现。

       通过上述分析,可以深入理解 golang 中 map 的实现原理。

三万字带你认识 Go 底层 map 的实现

       map在Go语言中是一种基础数据结构,广泛应用于日常开发。其设计遵循“数组+链表”的通用思路,但Go语言在具体实现上有着独特的设计。本文将带你深入了解Go语言中map的底层实现,包括数据结构设计、性能优化策略以及关键操作的内部实现。

       在Go语言的map中,数据存储在数组形式的桶(bucket)中,每个桶最多容纳8对键值对。哈希值的低位用于选择桶,而高位则用于在独立的桶中区分键。这种设计有助于高效地处理冲突和实现快速访问。

       源码位于src/runtime/map.go,展示了map的内部结构和操作。在该文件中,定义了桶和map的内存模型,桶的内存结构示例如下。每个桶的前7-8位未被使用,用于存储键值对,避免了不必要的内存填充。在桶的末尾,还有一个overflow指针,linux 修改内核源码用于连接超过桶容量的键值对,以构建额外的桶。

       初始化map有两种方式,根据是否指定初始化大小和hint值,调用不同的函数进行分配。对于不指定大小或hint值小于8的情况,使用make_small函数直接在堆上分配。当hint值大于8时,调用makemap函数进行初始化。

       插入操作的核心是找到目标键值对的内存地址,并通过该地址进行赋值。在实现中,没有直接将值写入内存,而是返回值在内存中的对应地址,以便后续进行赋值操作。同时,当桶达到容量上限时,会创建新的溢出桶来容纳多余的数据。

       查询操作通过遍历桶来实现,找到对应的键值对。对于查询逻辑的优化,Go语言提供了不同的函数实现,如mapaccess1、mapaccess2和mapaccessK等,它们在不同场景下提供高效的关键字查找和值获取。

       当map需要扩容时,Go语言会根据装载因子进行决策,以保持性能和内存使用之间的平衡。扩容操作涉及到数据搬移,通过hashGrow()和growWork()函数实现。增量扩容增加桶的数量,而等量扩容则通过重新排列元素提高桶的利用率。

       删除操作在Go语言中同样高效,利用map的内部机制快速完成。迭代map时,可以使用特定的函数遍历键值对,实现对数据的访问和操作。

       通过深入分析Go语言中map的实现,我们可以看到Go开发者在设计时的巧妙和全面考虑,不仅关注内存效率,还考虑到数据结构在不同情况下的复用和性能优化。这种设计思想不仅体现在map自身,也对后续的缓存库等开发产生了深远的影响。

       综上所述,Go语言中map的底层实现展示了高效、灵活和强大的设计原则,为开发者提供了强大的工具,同时也启发了其他数据结构和库的设计。了解这些细节有助于我们更深入地掌握Go语言的特性,并在实际开发中做出更优的选择。

JDK成长记7:3张图搞懂HashMap底层原理!

       一句话讲, HashMap底层数据结构,JDK1.7数组+单向链表、JDK1.8数组+单向链表+红黑树。

       在看过了ArrayList、LinkedList的底层源码后,相信你对阅读JDK源码已经轻车熟路了。除了List很多时候你使用最多的还有Map和Set。接下来我将用三张图和你一起来探索下HashMap的底层核心原理到底有哪些?

       首先你应该知道HashMap的核心方法之一就是put。我们带着如下几个问题来看下图:

       如上图所示,linux 内核源码结构put方法调用了putVal方法,之后主要脉络是:

       如何计算hash值?

       计算hash值的算法就在第一步,对key值进行hashCode()后,对hashCode的值进行无符号右移位和hashCode值进行了异或操作。为什么这么做呢?其实涉及了很多数学知识,简单的说就是尽可能让高和低位参与运算,可以减少hash值的冲突。

       默认容量和扩容阈值是多少?

       如上图所示,很明显第二步回调用resize方法,获取到默认容量为,这个在源码里是1<<4得到的,1左移4位得到的。之后由于默认扩容因子是0.,所以两者相乘就是扩容大小阈值*0.=。之后就分配了一个大小为的Node[]数组,作为Key-Value对存放的数据结构。

       最后一问题是,如何进行hash寻址的?

       hash寻址其实就在数组中找一个位置的意思。用的算法其实也很简单,就是用数组大小和hash值进行n-1&hash运算,这个操作和对hash取模很类似,只不过这样效率更高而已。hash寻址后,就得到了一个位置,可以把key-value的Node元素放入到之前创建好的Node[]数组中了。

       当你了解了上面的三个原理后,你还需要掌握如下几个问题:

       还是老规矩,看如下图:

       当hash值计算一致,比如当hash值都是时,Key-Value对的Node节点还有一个next指针,会以单链表的形式,将冲突的节点挂在数组同样位置。这就是数据结构中所提到解决hash 的冲突方法之一:单链法。当然还有探测法+rehash法有兴趣的人可以回顾《数据结构和算法》相关书籍。

       但是当hash冲突严重的时候,单链法会造成原理链接过长,导致HashMap性能下降,因为链表需要逐个遍历性能很差。所以JDK1.8对hash冲突的算法进行了优化。当链表节点数达到8个的时候,会自动转换为红黑树,自平衡的一种二叉树,有很多特点,比如区分红和黑节点等,具体大家可以看小灰算法图解。红黑树的遍历效率是O(logn)肯定比单链表的O(n)要好很多。

       总结一句话就是,hash冲突使用单链表法+红黑树来解决的。

       上面的图,核心脉络是四步,源码具体的就不粘出来了。当put一个之后,map的size达到扩容阈值,就会触发rehash。你可以看到如下具体思路:

       情况1:如果数组位置只有一个值:使用新的容量进行rehash,即e.hash & (newCap - 1)

       情况2:如果数组位置有链表,根据 e.hash & oldCap == 0进行判断,结果为0的使用原位置,否则使用index + oldCap位置,放入元素形成新链表,这里不会和情况1新的容量进行rehash与运算了,index + oldCap这样更省性能。usb上位机源码

       情况3:如果数组位置有红黑树,根据split方法,同样根据 e.hash & oldCap == 0进行树节点个数统计,如果个数小于6,将树的结果恢复为普通Node,否则使用index + oldCap,调整红黑树位置,这里不会和新的容量进行rehash与运算了,index + oldCap这样更省性能。

       你有兴趣的话,可以分别画一下这三种情况的图。这里给大家一个图,假设都出发了以上三种情况结果如下所示:

       上面源码核心脉络,3个if主要是校验了一堆,没做什么事情,之后赋值了扩容因子,不传递使用默认值0.,扩容阈值threshold通过tableSizeFor(initialCapacity);进行计算。注意这里只是计算了扩容阈值,没有初始化数组。代码如下:

       竟然不是大小*扩容因子?

       n |= n >>> 1这句话,是在干什么?n |= n >>> 1等价于n = n | n >>>1; 而|表示位运算中的或,n>>>1表示无符号右移1位。遇到这种情况,之前你应该学到了,如果碰见复杂逻辑和算法方法就是画图或者举例子。这里你就可以举个例子:假设现在指定的容量大小是,n=cap-1=,那么计算过程应该如下:

       n是int类型,java中一般是4个字节,位。所以的二进制: 。

       最后n+1=,方法返回,赋值给threshold=。再次注意这里只是计算了扩容阈值,没有初始化数组。

       为什么这么做呢?一句话,为了提高hash寻址和扩容计算的的效率。

       因为无论扩容计算还是寻址计算,都是二进制的位运算,效率很快。另外之前你还记得取余(%)操作中如果除数是2的幂次方则等同于与其除数减一的与(&)操作。即 hash%size = hash & (size-1)。这个前提条件是除数是2的幂次方。

       你可以再回顾下resize代码,看看指定了map容量,第一次put会发生什么。会将扩容阈值threshold,这样在第一次put的时候就会调用newCap = oldThr;使得创建一个容量为threshold的数组,之后从而会计算新的扩容阈值newThr为newCap*0.=*0.=。也就是说map到了个元素就会进行扩容。

       除了今天知识,技能的成长,给大家带来一个金句甜点,结束我今天的分享:坚持的三个秘诀之一目标化。

       坚持的秘诀除了上一节提到的视觉化,第二个秘诀就是目标化。顾名思义,就是需要给自己定立一个目标。这里要提到的是你的目标不要定的太高了。就比如你想要增加肌肉,给自己定了一个目标,每天5组,每次个俯卧撑,你看到自己胖的身形或者海报,很有刺激,结果开始前两天非常厉害,干劲十足,特别奥利给。但是第三天,你想到要个俯卧撑,你就不想起床,就算起来,可能也会把自己撅死过去......其实你的目标不要一下子定的太大,要从微习惯开始,比如我媳妇从来没有做过俯卧撑,就让她每天从1个开始,不能多,我就怕她收不住,做多了。一开始其实从习惯开始,先变成习惯,再开始慢慢加量。量太大养不成习惯,量小才能养成习惯。很容易做到才能养成,你想想是不是这个道理?

       所以,坚持的第二个秘诀就是定一个目标,可以通过小量目标,养成微习惯。比如每天你可以读五分钟书或者5分钟成长记,不要多,我想超过你也会睡着了的.....

       最后,大家可以在阅读完源码后,在茶余饭后的时候问问同事或同学,你也可以分享下,讲给他听听。

Java面试问题:HashMap的底层原理

       JDK1.8中HashMap的put()和get()操作的过程

       put操作:

       ①首先判断数组是否为空,如果数组为空则进行第一次扩容(resize)

       ②根据key计算hash值并与上数组的长度-1(int index = key.hashCode()&(length-1))得到键值对在数组中的索引。

       ③如果该位置为null,则直接插入

       ④如果该位置不为null,则判断key是否一样(hashCode和equals),如果一样则直接覆盖value

       ⑤如果key不一样,则判断该元素是否为 红黑树的节点,如果是,则直接在 红黑树中插入键值对

       ⑥如果不是 红黑树的节点,则就是 链表,遍历这个 链表执行插入操作,如果遍历过程中若发现key已存在,直接覆盖value即可。

       如果 链表的长度大于等于8且数组中元素数量大于等于阈值,则将 链表转化为 红黑树,(先在 链表中插入再进行判断)

       如果 链表的长度大于等于8且数组中元素数量小于阈值,则先对数组进行扩容,不转化为 红黑树。

       ⑦插入成功后,判断数组中元素的个数是否大于阈值(threshold),超过了就对数组进行扩容操作。

       get操作:

       ①计算key的hashCode的值,找到key在数组中的位置

       ②如果该位置为null,就直接返回null

       ③否则,根据equals()判断key与当前位置的值是否相等,如果相等就直接返回。

       ④如果不等,再判断当前元素是否为树节点,如果是树节点就按 红黑树进行查找。

       ⑤否则,按照 链表的方式进行查找。

       3.HashMap的扩容机制

       4.HashMap的初始容量为什么是?

       1.减少hash碰撞 (2n ,=2^4)

       2.需要在效率和内存使用上做一个权衡。这个值既不能太小,也不能太大。

       3.防止分配过小频繁扩容

       4.防止分配过大浪费资源

       5.HashMap为什么每次扩容都以2的整数次幂进行扩容?

       因为Hashmap计算存储位置时,使用了(n - 1) & hash。只有当容量n为2的幂次方,n-1的二进制会全为1,位运算时可以充分散列,避免不必要的哈希冲突,所以扩容必须2倍就是为了维持容量始终为2的幂次方。

       6.HashMap扩容后会重新计算Hash值吗?

       ①JDK1.7

       JDK1.7中,HashMap扩容后,所有的key需要重新计算hash值,然后再放入到新数组中相应的位置。

       ②JDK1.8

       在JDK1.8中,HashMap在扩容时,需要先创建一个新数组,然后再将旧数组中的数据转移到新数组上来。

       此时,旧数组中的数据就会根据(e.hash & oldCap),数据的hash值与扩容前数组的长度进行与操作,根据结果是否等于0,分为2类。

       1.等于0时,该节点放在新数组时的位置等于其在旧数组中的位置。

       2.不等于0时,该节点在新数组中的位置等于其在旧数组中的位置+旧数组的长度。

       7.HashMap中当 链表长度大于等于8时,会将 链表转化为 红黑树,为什么是8?

       如果 hashCode 分布良好,也就是 hash 计算的结果离散好的话,那么 红黑树这种形式是很少会被用到的,因为各个值都均匀分布,很少出现 链表很长的情况。在理想情况下, 链表长度符合泊松分布,各个长度的命中概率依次递减,当长度为 8 的时候,概率仅为 0.。这是一个小于千万分之一的概率,通常我们的 Map 里面是不会存储这么多的数据的,所以通常情况下,并不会发生从 链表向 红黑树的转换。

       8.HashMap为什么线程不安全?

       1.在JDK1.7中,当并发执行扩容操作时会造成死循环和数据丢失的情况。

       在JDK1.7中,在多线程情况下同时对数组进行扩容,需要将原来数据转移到新数组中,在转移元素的过程中使用的是头插法,会造成死循环。

       2.在JDK1.8中,在并发执行put操作时会发生数据覆盖的情况。

       如果线程A和线程B同时进行put操作,刚好这两条不同的数据hash值一样,并且该位置数据为null,所以这线程A、B都会通过判断,将执行插入操作。

       假设一种情况,线程A进入后还未进行数据插入时挂起,而线程B正常执行,从而正常插入数据,然后线程A获取CPU时间片,此时线程A不用再进行hash判断了,问题出现:线程A会把线程B插入的数据给覆盖,发生线程不安全。

       9.为什么HashMapJDK1.7中扩容时要采用头插法,JDK1.8又改为尾插法?

       JDK1.7的HashMap在实现resize()时,新table[ ]的列表队头插入。

       这样做的目的是:避免尾部遍历。

       避免尾部遍历是为了避免在新列表插入数据时,遍历到队尾的位置。因为,直接插入的效率更高。

       对resize()的设计来说,本来就是要创建一个新的table,列表的顺序不是很重要。但如果要确保插入队尾,还得遍历出 链表的队尾位置,然后插入,是一种多余的损耗。

       直接采用队头插入,会使得 链表数据倒序。

       JDK1.8采用尾插法是避免在多线程环境下扩容时采用头插法出现死循环的问题。

       .HashMap是如何解决哈希冲突的?

       拉链法(链地址法)

       为了解决碰撞,数组中的元素是单向 链表类型。当 链表长度大于等于8时,会将 链表转换成 红黑树提高性能。

       而当 链表长度小于等于6时,又会将 红黑树转换回单向 链表提高性能。

       .HashMap为什么使用 红黑树而不是B树或 平衡二叉树AVL或二叉查找树?

       1.不使用二叉查找树

       二叉 排序树在极端情况下会出现线性结构。例如:二叉 排序树左子树所有节点的值均小于根节点,如果我们添加的元素都比根节点小,会导致左子树线性增长,这样就失去了用树型结构替换 链表的初衷,导致查询时间增长。所以这是不用二叉查找树的原因。

       2.不使用 平衡二叉树

       平衡二叉树是严格的平衡树, 红黑树是不严格平衡的树, 平衡二叉树在插入或删除后维持平衡的开销要大于 红黑树。

       红黑树的虽然查询性能略低于 平衡二叉树,但在插入和删除上性能要优于 平衡二叉树。

       选择 红黑树是从功能、性能和开销上综合选择的结果。

       3.不使用B树/B+树

       HashMap本来是数组+ 链表的形式, 链表由于其查找慢的特点,所以需要被查找效率更高的树结构来替换。

       如果用B/B+树的话,在数据量不是很多的情况下,数据都会“挤在”一个结点里面,这个时候遍历效率就退化成了 链表。

       .HashMap和Hashtable的异同?

       ①HashMap是⾮线程安全的,Hashtable是线程安全的。

       Hashtable 内部的⽅法基本都经过 synchronized 修饰。

       ②因为线程安全的问题,HashMap要⽐Hashtable效率⾼⼀点。

       ③HashMap允许键和值是null,而Hashtable不允许键或值是null。

       HashMap中,null 可以作为键,这样的键只有 ⼀个,可以有 ⼀个或多个键所对应的值为 null。

       HashTable 中 put 进的键值只要有 ⼀个 null,直接抛出 NullPointerException。

       ④ Hashtable默认的初始 大小为,之后每次扩充,容量变为原来的2n+1。

       HashMap默认的初始 大⼩为,之后每次扩充,容量变为原来的2倍。

       ⑤创建时如果给定了容量初始值,那么 Hashtable 会直接使⽤你给定的 ⼤⼩, ⽽ HashMap 会将其扩充为2的幂次⽅ ⼤⼩。

       ⑥JDK1.8 以后的 HashMap 在解决哈希冲突时当 链表⻓度 大于等于8时,将 链表转化为红⿊树,以减少搜索时间。Hashtable没有这样的机制。

       Hashtable的底层,是以数组+ 链表的形式来存储。

       ⑦HashMap的父类是AbstractMap,Hashtable的父类是Dictionary

       相同点:都实现了Map接口,都存储k-v键值对。

       .HashMap和HashSet的区别?

       HashSet 底层就是基于 HashMap 实现的。(HashSet 的源码⾮常⾮常少,因为除了 clone() 、 writeObject() 、 readObject() 是 HashSet ⾃⼰不得不实现之外,其他⽅法都是直接调用 HashMap 中的⽅法)

       1.HashMap实现了Map接口,HashSet实现了Set接口

       2.HashMap存储键值对,HashSet存储对象

       3.HashMap调用put()向map中添加元素,HashSet调用add()方法向Set中添加元素。

       4.HashMap使用键key计算hashCode的值,HashSet使用对象来计算hashCode的值,在hashCode相等的情况下,使用equals()方法来判断对象的相等性。

       5.HashSet中的元素由HashMap的key来保存,而HashMap的value则保存了一个静态的Object对象。

       .HashSet和TreeSet的区别?

       相同点:HashSet和TreeSet的元素都是不能重复的,并且它们都是线程不安全的。

       不同点:

       ①HashSet中的元素可以为null,但TreeSet中的元素不能为null

       ②HashSet不能保证元素的排列顺序,TreeSet支持自然 排序、定制 排序两种 排序方式

       ③HashSet底层是采用 哈希表实现的,TreeSet底层是采用 红黑树实现的。

       ④HashSet的add,remove,contains方法的时间复杂度是 O(1),TreeSet的add,remove,contains方法的时间复杂度是 O(logn)

       .HashMap的遍历方式?

       ①通过map.keySet()获取key,根据key获取到value

       ②通过map.keySet()遍历key,通过map.values()遍历value

       ③通过Map.Entry(String,String) 获取,然后使用entry.getKey()获取到键,通过entry.getValue()获取到值

       ④通过Iterator

什么叫底层代码?

       底层代码是指被封装好的代码,底层代码写的就是比较原始,比较基础的代码。底层代码编写是非常接近机器的编程,使用底层开发语言(如C或汇编)。这与使用高级语言(例如Python,Java)的程序员进行编程不同。

       对于java来说,底层代码一般是指框架的实现代码,这些代码一般都是一些常用代码或比较接近于原始的代码,这些代码封装好,可以方便复用和调用。而对一些操作系统来说,底层代码可能就是c或者汇编,写底层代码就是做底层开发。比如java的Map类,底层代码实现:

扩展资料

       编写底层代码一般要比较深厚的功底,对程序设计,代码涉及的各个方面,性能,耦合度,复用性都要很深的掌握和考虑,熟练掌握设计模式,良好的编程习惯,代码优雅,数据结构,精通各种算法。

       很多java框架被淘汰,除了本身有致命的bug外,还有就是有性能更好,使用更方便的框架出现,而这些都是靠底层代码实现来决定的。

       

参考资料:

百度百科-底层开发

map在golang的底层实现和源码分析

       在Golang 1..2版本中,map的底层实现由两个核心结构体——hmap和bmap(此处用桶来描述)——构建。初始化map,如`make(map[k]v, hint)`,会创建一个hmap实例,包含map的所有信息。makemap函数负责创建hmap、计算B值和初始化桶数组。

       Golang map的高效得益于其巧妙的设计:首先,key的hash值的后B位作为桶索引;其次,key的hash值的前8位决定桶内结构体的数组索引,包括tophash、key和value;tophash数组还用于存储标志位,当桶内元素为空时,标志位能快速识别。读写删除操作充分利用了这些设计,包括更新、新增和删除key-value对。

       删除操作涉及到定位key,移除地址空间,更新桶内tophash的标志位。而写操作,虽然mapassign函数返回value地址但不直接写值,实际由编译器生成的汇编指令提高效率。扩容和迁移机制如sameSizeGrow和biggerSizeGrow,针对桶利用率低或桶数组满的情况,通过调整桶结构和数组长度,优化查找效率。

       evacuate函数负责迁移数据到新的桶区域,并清理旧空间。最后,虽然本文未详述,但订阅"后端云"公众号可获取更多关于Golang map底层实现的深入内容。