【android 实例源码】【查看macapp源码】【灵犀外卖 源码】bn网络源码_网络源码查看

时间:2025-01-24 16:48:55 编辑:网站源码统计 来源:stargan源码分析

1.DenseNet源码解读(pytorch官方)
2.深入理解Pytorch的网络网络BatchNorm操作(含部分源码)
3.caffe 中为什么bn层要和scale层一起使用
4.PyTorch 源码解读之 BN & SyncBN:BN 与 多卡同步 BN 详解
5.darknet序列解读一:框架构成
6.caffe中bn层为什么要和scale层一起使用?

bn网络源码_网络源码查看

DenseNet源码解读(pytorch官方)

       DenseNet源码解析:一个基于PyTorch实现的深度密集连接网络模型,提供了一系列预训练模型选项。源码源码首先,网络网络我们引入必要的源码源码库,如ReLU、网络网络卷积层、源码源码android 实例源码批量归一化和函数模块。网络网络DenseNet的源码源码核心是通过`_bn_function_factory`函数拼接前一层的特征,然后通过一系列的网络网络卷积块进行特征提取,包括1x1卷积、源码源码ReLU激活和3x3卷积,网络网络形成了密集层 `_DenseLayer`。源码源码该层可以设置内存高效模式以节省内存。网络网络在 `_DenseBlock` 中,源码源码通过循环堆叠指定数量的网络网络密集层,并在每个块之间插入降采样层 `_Transition` 以控制通道数量的增长。模型类 `DenseNet` 建立了整套网络结构,包括初始卷积层、多个密集块、过渡层以及最终的全局平均池化和全连接层。提供了针对不同配置(如densenet、densenet等)的预训练模型加载方法 `_densenet`,用户可以根据需求选择并加载预训练权重。

       每个模型函数,如`densenet`,接受参数如预训练状态、进度条显示等,允许用户根据需要定制网络行为。总的来说,DenseNet的设计旨在通过密集连接和递增特征组合来提升模型性能,适用于图像识别等计算机视觉任务。

深入理解Pytorch的查看macapp源码BatchNorm操作(含部分源码)

       Pytorch中的BatchNorm操作在训练和测试模式下有所不同,特别是在涉及dropout时。Batch Normalization(BN)是深度学习中的重要技术,通过在神经网络中间层对输入数据进行标准化处理,解决协方差偏移问题。其核心公式包含对每个通道数据的均值和方差计算,规范化操作后进行仿射变换以保持模型性能。

       在BN中,需要关注的参数主要包括学习参数gamma和beta,以及动态统计的running_mean和running_var。在Pytorch的实现中,如nn.BatchNorm2d API,关键参数包括trainning(模型是否在训练模式)、affine(是否启用仿射变换)、track_running_stats(是否跟踪动态统计)和momentum(动态统计更新的权重)。

       训练状态会影响BN层的计算,当模型处于训练状态(trainning=True)时,running_mean和running_var会在每次前向传播(forward())中更新,而转为测试模式(mode.eval())则会冻结这些统计值。源码中的_NormBase类和_BatchNorm类定义了这些操作的细节,包括动态统计的管理。

       对于自定义BN,可以重载前向传播函数,改变规范化操作的细节。总的来说,理解Pytorch的BatchNorm操作,需关注其在训练和测试模式中的行为,以及与模型训练状态相关的关键参数。

caffe 中为什么bn层要和scale层一起使用

       1) 输入归一化 x_norm = (x-u)/std, 其中u和std是个累计计算的均值和方差。

       2)y=alpha×x_norm + beta,对归一化后的x进行比例缩放和位移。其中alpha和beta是通过迭代学习的。

       é‚£ä¹ˆcaffe中的bn层其实只做了第一件事,scale层做了第二件事,所以两者要一起使用。

       ä¸€ï¼Œåœ¨Caffe中使用Batch Normalization需要注意以下两点:

       1. 要配合Scale层一起使用。

       2. è®­ç»ƒçš„时候,将BN层的use_global_stats设置为false,然后测试的时候将use_global_stats设置为true。

       äºŒï¼ŒåŸºæœ¬å…¬å¼æ¢³ç†ï¼š

       Scale层主要完成 top=alpha∗bottom+betatop=alpha∗bottom+beta的过程,则层中主要有两个参数alphaalpha与betabeta,

       æ±‚导会比较简单。∂y∂x=alpha;∂y∂alpha=x;∂y∂beta=1。 需要注意的是alphaalpha与betabeta均为向量,针对输入的channelschannels进行的处理,因此不能简单的认定为一个floatfloat的实数。

       ä¸‰ï¼Œå…·ä½“实现该部分将结合源码实现解析scalescale层:

       åœ¨Caffe proto中ScaleParameter中对Scale有如下几个参数:

       1,基本成员变量,基本成员变量主要包含了Bias层的参数以及Scale层完成对应通道的标注工作。

       2,基本成员函数,主要包含了LayerSetup,Reshape ,Forward和Backward ,内部调用的时候bias_term为true的时候会调用biasLayer的相关函数。

       3,Reshape 调整输入输出与中间变量,Reshape层完成许多中间变量的size初始化。

       4,Forward 前向计算,前向计算,在BN中国紧跟着BN的归一化输出,完成乘以alpha与+bias的操作,由于alpha与bias均为C的向量,因此需要先进行广播。

       5,Backward 反向计算,主要求解三个梯度,对alpha 、beta和输入的bottom(此处的temp)。

PyTorch 源码解读之 BN & SyncBN:BN 与 多卡同步 BN 详解

       BatchNorm原理

       BatchNorm最早在全连接网络中提出,旨在对每个神经元的输入进行归一化操作。在卷积神经网络(CNN)中,这一原理被扩展为对每个卷积核的灵犀外卖 源码输入进行归一化,即在channel维度之外的所有维度上进行归一化。BatchNorm带来的优势包括提高网络的收敛速度、稳定训练过程、减少过拟合现象等。

       BatchNorm的数学表达式为公式[1],引入缩放因子γ和移位因子β,作者在文章中解释了它们的作用。

       PyTorch中与BatchNorm相关的类主要位于torch.nn.modules.batchnorm模块中,包括如下的类:_NormBase、BatchNormNd。

       具体实现细节如下:

       _NormBase类定义了BN相关的一些属性。

       初始化过程。

       模拟BN的forward过程。

       running_mean、running_var的更新逻辑。

       γ、β参数的更新方式。

       BN在eval模式下的行为。

       BatchNormNd类包括BatchNorm1d、BatchNorm2d、BatchNorm3d,它们的区别在于检查输入的合法性,BatchNorm1d接受2D或3D的输入,BatchNorm2d接受4D的输入,BatchNorm3d接受5D的输入。

       接着,介绍SyncBatchNorm的实现。

       BN性能与batch size密切相关。在batch size较小的场景中,如检测任务,内存占用较高,app更改源码单张显卡难以处理较多,导致BN效果不佳。SyncBatchNorm提供了解决方案,其原理是所有计算设备共享同一组BN参数,从而获得全局统计量。

       SyncBatchNorm在torch/nn/modules/batchnorm.py和torch/nn/modules/_functions.py中实现,前者负责输入合法性检查以及参数设置,后者负责单卡统计量计算和进程间通信。

       SyncBatchNorm的forward过程。

       复习方差计算方式。

       单卡计算均值、方差,进行归一化处理。

       同步所有卡的数据,得到全局均值mean_all和逆标准差invstd_all,计算全局统计量。

       接着,介绍SyncBatchNorm的backward过程。

       在backward过程中,需要在BN前后进行进程间通信。这在_functions.SyncBatchNorm中实现。

       计算weight、bias的梯度以及γ、β,进一步用于计算梯度。

darknet序列解读一:框架构成

       darknet项目工程结构包含了多个文件夹,包括3rdparty、cfg、data、files、include、钓鱼web源码pre-train-weighted、scripts以及src。3rdparty存放第三方库;cfg文件夹内存储各种配置文件,如网络配置文件和data配置文件;data文件夹类似标准C工程中的resource文件夹,用于存放数据,如voc数据集;files文件夹是我自己添加的,用于存放对darknet某些具体细节代码的详细说明;include文件夹存放darknet头文件,主要针对win系统;pre-train-weighted存放预训练权重文件;scripts存放一些脚本文件等;src文件夹是整个项目的核心,存放所有源代码,包括各种网络层结构和重要工具函数。

       darknet框架的整体结构遵循一个固定流程,其核心代码逻辑可以简要表示为:网络配置文件中定义的batch和subdivisions参数用于将batch数据拆分成subdivisions份,在数据加载时一次性加载batch个数据,但在进行前向传播和反向传播时,每次仅利用batch/subdivisions个数据。这种设计旨在减轻GPU显存压力并实现类似大batch更新的效果,但与一次性处理所有batch数据存在区别,尤其是BN层的计算。

       darknet框架的所有功能入口位于src/darknet.c文件中的main函数,支持目标检测、RNN和分类算法。虽然run_yolo()和run_detector()看似不同,实际上它们是同一功能,这是为了兼容旧版darknet框架。对于darknet来说,其核心在于yolo算法,尽管它支持分类任务,但由于数据增强操作有限,且与Python第三方库相比,darknet自身携带的增强操作不够丰富,训练分类网络效果并不理想。因此,推荐使用如pytorch框架进行图像分类任务。解读时,主要聚焦于检测算法,并详细解析了整个训练过程,包括解析配置文件、构建和初始化网络、加载数据以及训练网络等关键步骤。详细过程将包括对数据加载、网络初始化、数据增强、前向传播、反向传播以及参数更新等部分的深入分析。

       本次解读涵盖了darknet框架的整体结构、核心设计原则、功能入口及其在目标检测任务中的实现细节。后续解读将更具体地分析darknet如何解析网络配置文件并初始化网络,为读者提供一个全面理解darknet框架的视角。

caffe中bn层为什么要和scale层一起使用?

       1) 输入归一化 x_norm = (x-u)/std, 其中u和std是个累计计算的均值和方差。

       2)y=alpha×x_norm + beta,对归一化后的x进行比例缩放和位移。其中alpha和beta是通过迭代学习的。

       那么caffe中的bn层其实只做了第一件事,scale层做了第二件事,所以两者要一起使用。

       一,在Caffe中使用Batch Normalization需要注意以下两点:

       1. 要配合Scale层一起使用。

       2. 训练的时候,将BN层的use_global_stats设置为false,然后测试的时候将use_global_stats设置为true。

       二,基本公式梳理:

       Scale层主要完成 top=alpha∗bottom+betatop=alpha∗bottom+beta的过程,则层中主要有两个参数alphaalpha与betabeta,

       求导会比较简单。∂y∂x=alpha;∂y∂alpha=x;∂y∂beta=1。 需要注意的是alphaalpha与betabeta均为向量,针对输入的channelschannels进行的处理,因此不能简单的认定为一个floatfloat的实数。

       三,具体实现该部分将结合源码实现解析scalescale层:

       在Caffe proto中ScaleParameter中对Scale有如下几个参数:

       1,基本成员变量,基本成员变量主要包含了Bias层的参数以及Scale层完成对应通道的标注工作。

       2,基本成员函数,主要包含了LayerSetup,Reshape ,Forward和Backward ,内部调用的时候bias_term为true的时候会调用biasLayer的相关函数。

       3,Reshape 调整输入输出与中间变量,Reshape层完成许多中间变量的size初始化。

       4,Forward 前向计算,前向计算,在BN中国紧跟着BN的归一化输出,完成乘以alpha与+bias的操作,由于alpha与bias均为C的向量,因此需要先进行广播。

       5,Backward 反向计算,主要求解三个梯度,对alpha 、beta和输入的bottom(此处的temp)。

ConvNeXt详解

       ConvNeXt是由FAIR团队近期提出的卷积神经网络架构,它凭借传统的卷积结构在ImageNet Top-1分类任务中取得了优异性能,与近年来流行的基于Transformer的视觉解决方案形成鲜明对比。这一成果得到了业界的广泛关注,包括何恺明、RGB和Yann LeCun等知名学者的支持。ConvNeXt并非创新复杂,而是通过组合已有的网络组件,如深度可分离卷积、逆瓶颈层和大卷积核等,经过大量实验调整,实现了高性能。通过学习ConvNeXt,研究者可以深入了解CNN和Transformer之间的竞争,并从实践层面观察它们的性能。

       论文和源码链接:[arxiv.org/abs/....][github.com/facebookrese...] ConvNeXt的发展路径包括从ResNet-出发,逐步优化宏观设计、深度可分离卷积等五个角度,借鉴Swin Transformer的理念。训练策略的改进,如增加Epoch数、优化优化器、数据增强和正则化,显著提升了模型性能。在模型结构上,ConvNeXt对每个Stage的计算比例、Patchify Stem、分组卷积和逆瓶颈层进行了调整,引入大卷积核并进行了细致的细节优化,如GELU替换ReLU、减少激活函数和归一化层,以及BN和LN的使用,这些改进都促使模型精度提升至.5%。不同规模的ConvNeXt版本也展示了其在ImageNet-1K上的多样化性能。总的来说,ConvNeXt的成功证明了在视觉任务中,Transformer的突出表现并非源于理论优势,而是源于近年来优化技巧的积累,类似于ResNet-Timm的调参提升。尽管如此,Transformer在视觉领域的潜力仍值得探索,未来可能需要更适应图像任务的新型结构出现。

BatchNorm理解(含Pytorch部分源码)

       深度学习中,数据归一化是关键。神经网络学习数据分布以在测试集上达到泛化效果。然而,若每个batch输入数据分布不同,即Covariate Shift,这会带来训练挑战。数据经过多层网络后,分布发生改变,形成Internal Covariate Shift,这进一步增加了下层网络学习的难度。为解决中间层Internal Covariate Shift问题,引入了Batch Normalization(BN)操作。

       BN算法流程如下:

       (1)计算输入批量数据的均值。

       (2)计算输入批量数据的方差。

       (3)对每个数据进行归一化。

       (4)引入缩放变量和平移变量,通过训练更新,计算归一化后的值。

       BN中均值方差计算基于张量数据,通常维度为[N, H, W, C]。其中N为batch_size,H和W为特征图尺寸,C为通道数。均值计算是每个通道内数字总和除以[N, H, W]。例如,对于[2,2,2,3]输入,代表2个batch,每个batch有3个特征图(通道数为3),每个特征图大小为2*2。以通道1为例,计算步骤如下:

       均值计算公式为:均值=(所有数字总和)/ [N, H, W]。

       最终获得三个通道的均值和方差,网络更新参数,为每一个channel对应一个缩放变量和平移变量。

       在Pytorch中,BN通过_NormBase类和_BatchNorm类实现。_NormBase类定义BN相关的属性,_BatchNorm类继承自_NormBase,是BatchNorm2d实际调用的类。具体源码包括定义属性、计算均值和方差、归一化以及参数更新等关键步骤。