【apache2.4源码安装】【清华安卓源码】【上海桑拿论坛源码】redis指令源码_redis 指令

来源:上涨之前指标公式源码

1.redis7.0源码阅读:Redis中的指指令IO多线程(线程池)
2.[redis 源码走读] maxmemory 数据淘汰策略
3.Redis 哨兵模式 - 源码梳理
4.redis scan 命令底层原理(为什么会重复扫描?)
5.Redis源码阅读(1)——zmalloc
6.Redis 主从复制 - 源码梳理

redis指令源码_redis 指令

redis7.0源码阅读:Redis中的IO多线程(线程池)

       Redis服务端处理客户端请求时,采用单线程模型执行逻辑操作,令源然而读取和写入数据的指指令操作则可在IO多线程模型中进行。在Redis中,令源命令执行发生在单线程环境中,指指令而数据的令源apache2.4源码安装读取与写入则通过线程池进行。一个命令从客户端接收,指指令解码成具体命令,令源根据该命令生成结果后编码并回传至客户端。指指令

       Redis配置文件redis.conf中可设置开启IO多线程。令源通过设置`io-threads-do-reads yes`开启多线程,指指令同时配置`io-threads 2`来创建两个线程,令源其中一个是指指令主线程,另一个为IO线程。令源在网络处理文件networking.c中,指指令`stopThreadedIOIfNeeded`函数会判断当前需要执行的命令数是否超过线程数,若少于线程数,则不开启多线程模式,便于调试。

       要进入IO多线程模式,运行redis-server命令,然后在调试界面设置断点在networking.c的`readQueryFromClient`函数中。使用redis-cli输入命令时,可以观察到两个线程在运行,一个为主线程,另一个为IO线程。

       相关视频推荐帮助理解线程池在Redis中的应用,包括手写线程池及线程池在后端开发中的实际应用。学习资源包括C/C++ Linux服务器开发、后台架构师技术等领域,需要相关资料可加入交流群获取免费分享。

       在Redis中,IO线程池实现中,主要包括以下步骤:

       读取任务的处理通过`postponeClientRead`函数,判断是否启用IO多线程模式,将任务加入到待执行任务队列。

       主线程执行`postponeClientRead`函数,将待读客户端任务加入到读取任务队列。在多线程模式下,任务被添加至队列中,由IO线程后续执行。

       多线程读取IO任务`handleClientsWithPendingReadsUsingThreads`通过解析协议进行数据读取,与写入任务的多线程处理机制相似。

       多线程写入IO任务`handleClientsWithPendingWritesUsingThreads`包括判断是否需要启动IO多线程、负载均衡分配任务到不同IO线程、启动IO子线程执行写入操作、等待IO线程完成写入任务等步骤。负载均衡通过将任务队列中的清华安卓源码任务均匀分配至不同的线程消费队列中,实现无锁化操作。

       线程调度部分包含开启和关闭IO线程的功能。在`startThreadedIO`中,每个IO线程持有锁,若主线程释放锁,线程开始工作,IO线程标识设置为活跃状态。而在`stopThreadedIO`中,若主线程获取锁,则IO线程等待并停止,IO线程标识设置为非活跃状态。

[redis 源码走读] maxmemory 数据淘汰策略

       Redis 是一个内存数据库,通过配置 `maxmemory` 来限定其内存使用量。当 Redis 主库内存超出限制时,会触发数据淘汰机制,以减少内存使用量,直至达到限制阈值。

       当 `maxmemory` 配置被应用,Redis 会根据配置采用相应的数据淘汰策略。`volatile-xxx` 类型配置仅淘汰设置了过期时间的数据,而 `allkeys-xxx` 则淘汰数据库中所有数据。若 Redis 主要作为缓存使用,可选择 `allkeys-xxx`。

       数据淘汰时机发生在事件循环处理命令时。有多种淘汰策略可供选择,从简单到复杂包括:不淘汰数据(`noeviction`)、随机淘汰(`volatile-random`、`allkeys-random`)、采样淘汰(`allkeys-lru`、`volatile-lru`、`volatile-ttl`、`volatile-freq`)以及近似 LRU 和 LRU 策略(`volatile-lru` 和 `allkeys-lru`)。

       `noeviction` 策略允许读操作但禁止大多数写命令,返回 `oomerr` 错误,仅允许执行少量写命令,如删除命令 `del`、`hdel` 和 `unlink`。

       `volatile-random` 和 `allkeys-random` 机制相对直接,随机淘汰数据,策略相对暴力。

       `allkeys-lru` 策略根据最近最少使用(LRU)算法淘汰数据,优先淘汰最久未使用的数据。

       `volatile-lru` 结合了过期时间与 LRU 算法,优先淘汰那些最久未访问且即将过期的数据。

       `volatile-ttl` 策略淘汰即将过期的数据,而 `volatile-freq` 则根据访问频率(LFU)淘汰数据,考虑数据的上海桑拿论坛源码使用热度。

       `volatile-lru` 和 `allkeys-lru` 策略通过采样来近似 LRU 算法,维护一个样本池来确定淘汰顺序,以提高淘汰策略的精确性。

       总结而言,Redis 的数据淘汰策略旨在平衡内存使用与数据访问需求,通过灵活的配置实现高效的数据管理。策略的选择应基于具体应用场景的需求,如数据访问模式、性能目标等。

Redis 哨兵模式 - 源码梳理

       本文以Redis 7.0.版本为基准,如有不妥之处,敬请指正。

       哨兵模式的代码流程逻辑如下:哨兵节点每秒(主从切换时为1秒)向已知的主节点和从节点发送info命令。接收到主节点的info回复后,解析其中的slave字段信息,进而创建相应的从节点instance。收到从节点的info回复后,解析其中的slave_master_host、slave_master_port、slave_master_link_status、slave_priority、slave_repl_offset、replica_announced等信息(步骤2和sentinelInfoReplyCallback)。

       在sentinel.masters的初始数据中,来自于sentinel.conf中的monitor,利用info命令探测主节点及其所属的从节点。通过订阅__sentinel__:hello频道,获取其他哨兵节点的信息。其中,link->act_ping_time表示最早一次未收到回复的ping请求发送时间,收到回复后其会被重置为0。因此,其不为0时,表示有未收到回复的ping请求。link->last_avail_time表示最近一次收到对ping有效回复的时间,link->last_pong_time表示最近一次收到对ping回复(有效和无效)的时间,link->pc_last_activity表示最近一次收到publish的消息,ri->role_reported_time表示最近一次收到info且回复中role相比于上次发生改变的时间。

       Raft一致性算法

       thesecretlivesofdata.com...

redis scan 命令底层原理(为什么会重复扫描?)

       在 Redis 中,迭代器作为数据结构的重要组成部分,用于在字典等容器上高效地遍历数据。然而,迭代过程中字典可能因为数据增删而触发 rehash,导致数据可能被重复遍历。本文将探讨 Redis 如何解决这个问题。

       首先,Redis active mq源码下载的字典迭代器数据结构包含一个 字节的指纹,它是字典状态的标识,通过 dictFingerprint 函数生成,当字典结构变化时,指纹值也随之改变。redis 提供了两种迭代器:普通迭代器和安全迭代器。普通迭代器对字典指纹严格校验,确保数据不重复,适用于如 sort 命令,它在读取有序集合数据时使用。安全迭代器则确保在 rehash 期间数据的准确性,允许字典操作,如 keys 命令中用于遍历整个字典。

       对于大规模数据,Redis 通过 scan 命令引入了间断遍历(如 hscan 和 zscan),如 dictScan 函数,允许在操作过程中进行 rehash。dictScan 通过算法设计,保证所有数据都能遍历到,同时避免了在扩容或缩容时的重复扫描。具体来说,它利用位反转算法和取模操作来调整遍历顺序,确保数据的一致性。

       在 rehash 过程中,Redis 会并存两个哈希表,小表优先遍历。后台线程定期处理 rehash,以1ms为间隔。scan 逻辑中,一次 dictScan 可能会遍历多个槽位,而客户端命令扫描的次数可能超出预期,这可能导致线程阻塞。

       总结来说,Redis 通过指纹校验、安全机制和巧妙的遍历策略,确保了迭代过程的准确性和效率,即使在 rehash 操作中也能有效地避免数据重复遍历的问题。

       

参考资料:

       - Add SCAN command

       - Fix dictScan(): It can't scan all buckets when dict is shrinking.

       -《Redis 设计与源码分析》陈雷

Redis源码阅读(1)——zmalloc

       zmalloc是一个简化内存分配的库,包含以下API函数:

       zmalloc

       zcalloc

       zrealloc

       zfree

       zstrdup

       zmalloc_used_memory

       zmalloc_set_oom_handler

       zmalloc_get_rss

       zmalloc_get_allocator_info

       zmalloc_get_private_dirty

       zmalloc_get_smap_bytes_by_field

       zmalloc_get_memory_size

       zlibc_free

       其中,zmalloc用于分配内存,zcalloc在分配内存的同时初始化为0,zrealloc用于重新分配内存,zfree用于释放内存,zstrdup用于复制字符串并分配内存,zmalloc_used_memory用于获取已分配内存的大小,zmalloc_set_oom_handler用于设置内存溢出处理器,zmalloc_get_rss用于获取当前进程的内存使用量,zmalloc_get_allocator_info用于获取分配器信息,人脸识别门禁源码zmalloc_get_private_dirty用于获取私有脏数据,zmalloc_get_smap_bytes_by_field用于获取指定字段的内存使用量,zmalloc_get_memory_size用于获取内存大小,zlibc_free用于释放内存。

       在zmalloc中,宏函数update_zmalloc_stat_alloc用于更新used_memory的值。这个宏函数中的if语句用于补齐分配的内存字节数到sizeof(long),但是我不太理解5.0源码中为什么atomicIncr使用的是__n而不是直接对_n进行操作。测试发现,used_memory的值并未对齐到8,那么if语句的存在意义何在呢?

       同样地,update_zmalloc_stat_free宏函数用于更新已释放内存的统计信息。与update_zmalloc_stat_alloc相比,虽然malloc_usable_size已经返回精确的字节数,但update_zmalloc_stat_alloc为何不直接使用atomicIncr更新used_memory呢?在Unstable分支中,已有开发者对此进行了优化。

Redis 主从复制 - 源码梳理

       本文主要剖析Redis主从复制机制中的核心组件之一——复制积压缓冲区(Replication Buffer),旨在为读者提供一个对Redis复制流程和缓冲区机制深入理解的平台,以下内容仅基于Redis版本7.0.,若读者在使用过程中发现偏差,欢迎指正。

       复制积压缓冲区在逻辑上可理解为一个容量最大的位整数,其初始值为1,由offset、master_repl_offset和repl_backlog-histlen三个变量共同决定缓冲区的有效范围。offset表示缓冲区内命令起始位置,master_repl_offset代表结束位置,二者之间的长度由repl_backlog-histlen表示。

       每当主节点执行写命令,新生成的积压缓冲区大小增加,同时增加master_repl_offset和repl_backlog-histlen的值,直至达到预设的最大容量(默认为1MB)。一旦所有从节点接收到命令并确认同步无误,缓冲区内过期的命令将被移除,并调整offset和histlen以维持积压区容量的稳定性。

       为实现动态分配,复制积压缓冲区被分解成多个block,以链表形式组织。每个block采用引用计数管理策略,初始值为0,每当增加或删除从节点对block的引用时,计数值相应增减。新生成block时,将master_repl_offset+1设置为block的repl_offset值,并将写入命令拷贝至缓冲区内,与此同时,master_repl_offset和repl_backlog-histlen增加。

       通过循环遍历所有从节点,为每个从节点设置ref_repl_buf_node指向当前block或最后一个block,确保主从复制能够准确传递命令。当主节点接收到从节点的连接请求时,将开始填充积压缓冲区。在全量复制阶段,从slave-replstate为WAIT_BGSAVE_START至ONLINE,表示redis从后台进程开始执行到完成RDB文件传输和加载,命令传播至此阶段正式开始。

       针对每个从节点,主节点从slave-ref_block_pos开始发送积压缓冲区内的命令,每发送成功,slave-ref_block_pos相应更新。当积压缓冲区超过预设阈值,即复制积压缓冲区中的有效长度超过repl-backlog-size(默认1MB)时,主节点将清除已发送的缓冲区,释放内存。如果主节点写入命令频繁或从节点断线重连时间长,则需合理调整缓冲区大小(推荐值为2 * second * write_size_per_second)以保持增量复制的稳定运行。

       当最后一个从节点与主节点的连接断开超过repl-backlog-ttl(默认为秒)时,主节点将释放repl_backlog和复制积压缓冲区以确保资源的有效使用。不过需要注意的是,从节点的释放操作依赖于节点是否可能成为新的主节点,因此在最后处理逻辑上需保持谨慎。

Redis源码从哪里读起?

       如果你正寻求理解Redis源码的路径,本文为你提供了一个全面的指南。Redis 是使用 C 语言构建的,因此,我们从 main 函数开始,深入探索其核心逻辑。在阅读过程中,我们应聚焦于从外部命令输入到内部执行流程的路径,逐步理解 Redis 的工作原理。

       理解事件机制对于深入 Redis 的核心至关重要。通过 Redis 的事件循环,我们可以实现单线程环境下的高效处理多任务的能力。这一机制允许 Redis 以线程安全的方式处理大量请求,同时在执行后台任务时保持响应速度。事件循环与系统提供的异步 I/O 多路复用机制相结合,确保了 CPU 资源的高效利用,避免了并发执行的复杂性。

       在讨论事件循环时,我们重点关注了两个阶段:初始化和事件处理。初始化阶段涉及配置和数据加载,而事件处理阶段则负责响应客户端请求、执行命令以及周期性任务的调度。通过事件循环,Redis 实现了在单一线程下处理多个请求的高效运行模式。

       理解 Redis 命令请求的处理流程是整个指南的关键部分。当客户端向 Redis 发送命令时,流程分为两个阶段:连接建立和命令执行与响应。连接建立阶段由事件循环触发,而命令执行与响应阶段则涉及读取客户端发送的数据,执行命令并返回结果。这一过程通过特定的回调函数实现,确保了命令处理的高效和线程安全。

       此外,我们还讨论了 Redis 的事件机制,即事件驱动程序库 ae.c,它在不同操作系统上支持多种 I/O 多路复用机制。在选择底层机制时,Redis 优先考虑后三种更现代、高效的方案,例如 macOS 上的 kqueue 和 Linux 上的 epoll。理解这些机制对于实现高性能网络服务至关重要。

       为了帮助读者在阅读 Redis 源码时构建清晰的思维路径,我们提供了一个树型图展示关键函数之间的调用关系。这张图基于 Redis 源码的 5.0 分支,详细地展示了初始化、事件处理、命令请求处理等关键流程的调用顺序。

       最后,本文提供的参考文献旨在为读者提供进一步学习的资源。对于希望深入理解 Redis 源码并学习 C 语言编程经验的读者,这些资源将起到重要作用。总的来说,本文旨在为那些希望从源头上理解 Redis 工作机制的技术爱好者提供一个全面、系统化的指南。

Redis源码解析:一条Redis命令是如何执行的?

       作者:robinhzhang

       Redis,一个开源内存数据库,凭借其高效能和广泛应用,如缓存、消息队列和会话存储,本文将带你探索其命令执行的底层流程。本文将以源码解析的形式,逐层深入Redis的核心结构和命令执行过程,旨在帮助开发者理解实现细节,提升编程技术和设计意识。

       源码结构概览

       在学习Redis源代码之前,首先要了解其主要的组成部分:redisServer、redisClient、redisDb、redisObject以及aeEventLoop。这些结构体和事件模型构成了Redis的核心架构。

       redisServer:服务端运行的核心结构,包括监听socket、数据存储的redisDb列表和客户端连接信息。

       redisClient:客户端连接状态的存储,包括命令处理缓冲区、回复数据列表和数据库句柄。

       redisDb:键值对的数据存储,采用两个哈希表实现渐进式rehash。

       redisObject:存储对象的通用表示,包含引用计数和LRU时间,用于内存管理。

       aeEventLoop:事件循环,管理文件和时间事件的处理。

       核心流程详解

       Redis的执行流程从main函数开始,首先初始化配置和服务器组件,进入主循环处理事件。命令执行流程涉及redis启动、客户端连接、接收命令和返回结果四个步骤:

       启动阶段:创建socket服务器,注册可读事件,进入主循环。

       连接阶段:客户端连接后,接收并处理命令,创建客户端实例。

       命令阶段:客户端发送命令,服务端解析并调用对应的命令处理函数。

       结果阶段:处理命令后,根据协议格式构建回复并写回客户端。

       渐进式rehash与内存管理

       Redis的内存管理采用引用计数法,通过对象的refcount字段控制内存分配和释放。rehash操作在Redis 2.x版本引入,通过逐步迁移键值对,降低对单线程性能的影响。当负载达到阈值,会进行扩容,这涉及新表的创建和键值对的迁移。

       总结

       本文通过Redis源码分析,揭示了其命令执行的细节,包括启动流程、客户端连接、命令处理和结果返回,以及内存管理策略。这将有助于开发者深入理解Redis的工作原理,提升编程效率和设计决策能力。

Redis 源码剖析 3 -- redisCommand

       Redis 使用 redisCommand 结构体处理命令请求,其内包含一个指向对应处理函数的 proc 指针。redisCommandTable 是一个存储所有 Redis 命令的数组,位于 server.c 文件中。此数组通过 populateCommandTable() 函数填充,该函数将 redisCommandTable 的内容添加到 server.commands 字典,将 Redis 支持的所有命令及其实现整合。

       populateCommandTable() 函数中包含 populateCommandTableParseFlags() 子函数,用于将 sflags 字符串转换为对应的 flags 值。lookupCommand*() 函数族负责从 server.commands 中查找相应的命令。

Redis 实现分布式锁 +Redisson 源码解析

       在一些场景中,多个进程需要以互斥的方式独占共享资源,这时分布式锁成为了一个非常有用的工具。

       随着互联网技术的快速发展,数据规模在不断扩大,分布式系统变得越来越普遍。一个应用往往会部署在多台机器上(多节点),在某些情况下,为了保证数据不重复,同一任务在同一时刻只能在一个节点上运行,即确保某一方法在同一时刻只能被一个线程执行。在单机环境中,应用是在同一进程下的,仅需通过Java提供的 volatile、ReentrantLock、synchronized 及 concurrent 并发包下的线程安全类等来保证线程安全性。而在多机部署环境中,不同机器不同进程,需要在多进程下保证线程的安全性,因此分布式锁应运而生。

       实现分布式锁的三种主要方式包括:zookeeper、Redis和Redisson。这三种方式都可以实现分布式锁,但基于Redis实现的性能通常会更好,具体选择取决于业务需求。

       本文主要探讨基于Redis实现分布式锁的方案,以及分析对比Redisson的RedissonLock、RedissonRedLock源码。

       为了确保分布式锁的可用性,实现至少需要满足以下四个条件:互斥性、过期自动解锁、请求标识和正确解锁。实现方式通过Redis的set命令加上nx、px参数实现加锁,以及使用Lua脚本进行解锁。实现代码包括加锁和解锁流程,核心实现命令和Lua脚本。这种实现方式的主要优点是能够确保互斥性和自动解锁,但存在单点风险,即如果Redis存储锁对应key的节点挂掉,可能会导致锁丢失,导致多个客户端持有锁的情况。

       Redisson提供了一种更高级的实现方式,实现了分布式可重入锁,包括RedLock算法。Redisson不仅支持单点模式、主从模式、哨兵模式和集群模式,还提供了一系列分布式的Java常用对象和锁实现,如可重入锁、公平锁、联锁、读写锁等。Redisson的使用方法简单,旨在分离对Redis的关注,让开发者更专注于业务逻辑。

       通过Redisson实现分布式锁,相比于纯Redis实现,有更完善的特性,如可重入锁、失败重试、最大等待时间设置等。同时,RedissonLock同样面临节点挂掉时可能丢失锁的风险。为了解决这个问题,Redisson提供了实现了RedLock算法的RedissonRedLock,能够真正解决单点故障的问题,但需要额外为RedissonRedLock搭建Redis环境。

       如果业务场景可以容忍这种小概率的错误,推荐使用RedissonLock。如果无法容忍,推荐使用RedissonRedLock。此外,RedLock算法假设存在N个独立的Redis master节点,并确保在N个实例上获取和释放锁,以提高分布式系统中的可靠性。

       在实现分布式锁时,还需要注意到实现RedLock算法所需的Redission节点的搭建,这些节点既可以是单机模式、主从模式、哨兵模式或集群模式,以确保在任一节点挂掉时仍能保持分布式锁的可用性。

       在使用Redisson实现分布式锁时,通过RedissonMultiLock尝试获取和释放锁的核心代码,为实现RedLock算法提供了支持。

文章所属分类:休闲频道,点击进入>>