1.��ϣֵ�淨Դ��
2.宇宙最强开源破解密码利器:Hashcat 第一篇
3.String源码分析(1)--哈希篇
4.HashMapå®ç°åç
5.mimikatz源码分析-lsadump模块(注册表)
6.Redis7.0源码阅读:哈希表扩容、哈希缩容以及rehash
��ϣֵ�淨Դ��
HashMap在后端面试中经常被问及,值玩比如默认初始容量、法源法源加载因子和线程安全性等问题。码搭码通常,建哈这些问题能对答如流,希算涨停价格指标源码表明对HashMap有较好的哈希理解。然而,值玩近期团队的法源法源技术分享中,我从两个角度获得了一些新见解,码搭码现在分享给大家。建哈
首先,希算让我们探讨如何找到比初始容量值大的哈希最小的2的幂次方整数。通常,值玩使用默认构造器时,法源法源HashMap的初始容量为,加载因子为0.。这样做可能导致在数据量大时频繁进行扩容,影响性能。因此,通常会预估容量并使用带容量的构造器创建。通过分析源码,我们可以得知HashMap数组部分长度范围为[0,2^]。要找到比初始容量大的最小的2的幂次方整数,我们需重点关注tableSizeFor方法。此方法巧妙地设计,当输入的容量本身为2的整数次幂时,返回该容量;否则,返回比输入容量大的最小2的整数次幂。此设计旨在确保容量始终为2的整数次幂,从而优化哈希操作,避免哈希冲突。在获取key对应的数组下标时,通过key的哈希值与数组长度-1进行与运算,这种方法依赖于容量为2的整数次幂的特性,以确保哈希值的分散性。
容量为2的整数次幂的关键在于,它允许通过与运算高效地定位key对应的数组下标。容量不是2的整数次幂时,与运算后的哈希值可能会导致位数为0的冲突,影响数据定位的准确性。tableSizeFor方法在计算过程中,首先对输入的容量进行-1操作,以避免容量本身就是2的整数次幂时,计算结果为容量的2倍。接着,通过连续的移位与或操作,找到比输入容量大的最小的2的整数次幂。这种方法确保了内存的有效利用,避免了不必要的扩容。
下面,求站内信源码让我们通过一个示例来详细解释算法中的移位与或操作。假设初始容量n为一个位的整数,例如:n = xxx xxxxxxxx xxxxxxxx xxxxxxxx(x表示该位上是0还是1,具体值不关心)。首先,执行n |= n >> 1操作,用n本身与右移一位后的n进行或操作,可以将n的最高位的1及其紧邻的右边一位置为1。接下来,重复此操作,进行n |= n >> 2、n |= n >> 4、n |= n >> 8和n |= n >> 。最后,将n与最大容量进行比较,如果大于等于2^,则返回最大容量;否则,返回n + 1,找到比n大的最小的2的整数次幂。
在实践中,这确保了在给定容量范围内高效地找到合适的容量值。例如,输入时,输出为,即比大的最小的2的整数次幂。
接下来,我们探讨HashMap在处理key时进行哈希处理的特殊操作。在执行put操作时,首先对key进行哈希处理。在源码中,可以看到执行了(h = key.hashCode()) ^ (h >> )的操作。这个操作将key的hashCode值与右移位后的值进行异或操作,将哈希值的高位和低位混合计算,以生成更离散的哈希值。通过演示,我们可以发现,当三个不同的key生成的hashCode值的低位完全相同、高位不同时,它们在数组中的下标会相同,导致哈希冲突。通过异或操作,我们解决了这个问题,使得经过哈希处理后的key能被更均匀地分布在数组中,提高了数据的分散性,减少了哈希冲突。
总结来说,这两个点揭示了HashMap在容量和哈希处理上的一些巧妙设计,这些设计提高了数据结构的效率和性能。理解这些原理不仅有助于解决面试问题,还能在实际工作中借鉴这些思想,Android源码泄露 后果优化数据存储和访问效率。希望我的讲解能帮助大家掌握这两个知识点,如有任何疑问,欢迎留言或私聊。通过深入研究和实践,我们可以更好地理解和利用HashMap这一强大的数据结构。
宇宙最强开源破解密码利器:Hashcat 第一篇
Hashcat被誉为宇宙最强的开源密码破解工具,拥有针对Windows、Mac和Linux系统的版本,支持多种计算核心如CPU、GPU、APU、DSP和FPGA。它能处理的hash散列算法多样,能够破解rar、office、pdf、windows账户、wifi等多种密码。本文将指导您在Windows 系统下安装和配置Hashcat,并展示具体密码破解方法和密码保护技巧。
开始,访问Hashcat官网下载最新版本的软件包,这里推荐使用v6.1.1,确保下载hashcat binaries,它已经包含了直接运行的exe可执行文件。对于hashcat sources,您需要利用类似的MinGW工具将其源码编译成可执行文件。下载完毕后,直接在软件包主目录下使用命令行运行Hashcat。运行时请确保已切换到Hashcat主目录。使用测试电脑配置进行Hashcat的探索。
在进行密码破解时,John the Ripper是一个常用的辅助工具,用于获取加密文件的Hash值。下载对应版本john-1.9.0,并配置所需的python和perl环境。通过命令行运行John the Ripper进行密码破解,注意调整相应的环境变量。
使用Hashcat破解密码的步骤包括查看命令行帮助和使用Hashcat的wiki文档。前者提供常用命令的概览,后者则详细介绍攻击类型、哈希类型对照表、掩码设置和平台支持。如有疑问,可以直接联系Hashcat团队。
接下来,通过指令`hashcat -b`测试笔记本的算力。针对rar、office、源码网站怎么运营pdf等加密文件,采用掩码攻击方法,而zip文件则使用字典攻击。具体操作包括创建测试rar文件,使用John the Ripper获取哈希值,然后在Hashcat中输入命令进行破解。结果将实时显示在控制台上,并输出到指定文件中。
本文展示了使用Hashcat对rar、zip、pdf和word加密文件的破解过程,包括字典破解和掩码破解。在实际应用中,应首先尝试字典破解,当现有字典无效时,可考虑使用暴力或掩码组合破解。随着密码复杂度的增加,破解难度将成指数级增长。未来,将继续深入研究Hashcat的密码破解技术,并分享密码设置的最佳实践。
String源码分析(1)--哈希篇
本文基于JDK1.8,从Java中==符号的使用开始,解释了它判断的是对象的内存地址而非内容是否相等。接着,通过分析String类的equals()方法实现,说明了在比较字符串时,应使用equals()而非==,因为equals()方法可以准确判断字符串内容是否相等。
深入探讨了String类作为“值类”的特性,即它需要覆盖Object类的equals()方法,以满足比较字符串时逻辑上相等的需求。同时,强调了在覆盖equals()方法时也必须覆盖hashCode()方法,以确保基于散列的集合(如HashMap、HashSet和Hashtable)可以正常工作。解释了哈希码(hashcode)在将不同的输入映射成唯一值中的作用,以及它与字符串内容的关系。
在分析String类的hashcode()方法时,介绍了计算哈希值的公式,包括使用这个奇素数的原因,以及其在计算性能上的优势。进一步探讨了哈希碰撞的概念及其产生的影响,提出了防止哈希碰撞的有效方法之一是扩大哈希值的取值空间,并介绍了生日攻击这一概念,解释了它如何在哈希空间不足够大时制造碰撞。
最后,总结了哈希碰撞与散列表性能的关系,以及在满足安全与成本之间找到平衡的重要性。提出了确保哈希值的财务总账源码销售最短长度的考虑因素,并提醒读者在理解和学习JDK源码时,可以关注相关公众号以获取更多源码分析文章。
HashMapå®ç°åç
HashMapå¨å®é å¼åä¸ç¨å°çé¢çé常é«ï¼é¢è¯ä¸ä¹æ¯çç¹ãæ以å³å®åä¸ç¯æç« è¿è¡åæï¼å¸æ对æ³çæºç ç人起å°ä¸äºå¸®å©ï¼çä¹åéè¦å¯¹é¾è¡¨æ¯è¾çæã以ä¸é½æ¯æèªå·±çç解ï¼æ¬¢è¿è®¨è®ºï¼åçä¸å¥½è½»å·ã
HashMapä¸çæ°æ®ç»æ为æ£å表ï¼åååå¸è¡¨ãå¨è¿éæä¼å¯¹æ£å表è¿è¡ä¸ä¸ªç®åçä»ç»ï¼å¨æ¤ä¹åæ们éè¦å å顾ä¸ä¸ æ°ç»ãé¾è¡¨çä¼ç¼ºç¹ã
æ°ç»åé¾è¡¨çä¼ç¼ºç¹åå³äºä»ä»¬åèªå¨å åä¸åå¨ç模å¼ï¼ä¹å°±æ¯ç´æ¥ä½¿ç¨é¡ºåºåå¨æé¾å¼åå¨å¯¼è´çãæ 论æ¯æ°ç»è¿æ¯é¾è¡¨ï¼é½æææ¾ç缺ç¹ãèå¨å®é ä¸å¡ä¸ï¼æ们æ³è¦çå¾å¾æ¯å¯»åãå é¤ãæå ¥æ§è½é½å¾å¥½çæ°æ®ç»æï¼æ£å表就æ¯è¿æ ·ä¸ç§ç»æï¼å®å·§å¦çç»åäºæ°ç»ä¸é¾è¡¨çä¼ç¹ï¼å¹¶å°å ¶ç¼ºç¹å¼±åï¼å¹¶ä¸æ¯å®å ¨æ¶é¤ï¼
æ£å表çåæ³æ¯å°keyæ å°å°æ°ç»çæ个ä¸æ ï¼ååçæ¶åéè¿keyè·åå°ä¸æ ï¼indexï¼ç¶åéè¿ä¸æ ç´æ¥ååãé度æå¿«ï¼èå°keyæ å°å°ä¸æ éè¦ä½¿ç¨æ£åå½æ°ï¼åååå¸å½æ°ã说å°åå¸å½æ°å¯è½æ人已ç»æ³å°äºï¼å¦ä½å°keyæ å°å°æ°ç»çä¸æ ã
å¾ä¸è®¡ç®ä¸æ 使ç¨å°äºä»¥ä¸ä¸¤ä¸ªå½æ°ï¼
å¼å¾æ³¨æçæ¯ï¼ä¸æ 并ä¸æ¯éè¿hashå½æ°ç´æ¥å¾å°çï¼è®¡ç®ä¸æ è¿è¦å¯¹hashå¼åindex()å¤çã
Psï¼å¨æ£å表ä¸ï¼æ°ç»çæ ¼åå«å桶ï¼ä¸æ å«å桶å·ï¼æ¡¶å¯ä»¥å å«ä¸ä¸ªkey-value对ï¼ä¸ºäºæ¹ä¾¿ç解ï¼åæä¸ä¼ä½¿ç¨è¿ä¸¤ä¸ªåè¯ã
以ä¸æ¯åå¸ç¢°æç¸å ³ç说æï¼
以ä¸æ¯ä¸æ å²çªç¸å ³ç说æï¼
å¾å¤äººè®¤ä¸ºåå¸å¼ç碰æåä¸æ å²çªæ¯åä¸ä¸ªä¸è¥¿ï¼å ¶å®ä¸æ¯çï¼å®ä»¬çæ£ç¡®å ³ç³»æ¯è¿æ ·çï¼hashCodeåç碰æï¼åä¸æ ä¸å®å²çªï¼èä¸æ å²çªï¼hashCode并ä¸ä¸å®ç¢°æ
ä¸ææå°ï¼å¨jdk1.8以åHashMapçå®ç°æ¯æ£å表 = æ°ç» + é¾è¡¨ï¼ä½æ¯å°ç®å为æ¢æ们è¿æ²¡æçå°é¾è¡¨èµ·å°çä½ç¨ãäºå®ä¸ï¼HashMapå¼å ¥é¾è¡¨çç¨æå°±æ¯è§£å³ä¸æ å²çªã
ä¸å¾æ¯å¼å ¥é¾è¡¨åçæ£å表ï¼
å¦ä¸å¾æ示ï¼å·¦è¾¹çç«æ¡ï¼æ¯ä¸ä¸ªå¤§å°ä¸ºçæ°ç»ï¼å ¶ä¸åå¨çæ¯é¾è¡¨ç头ç»ç¹ï¼æ们ç¥éï¼æ¥æé¾è¡¨ç头ç»ç¹å³å¯è®¿é®æ´ä¸ªé¾è¡¨ï¼æ以认为è¿ä¸ªæ°ç»ä¸çæ¯ä¸ªä¸æ é½åå¨çä¸ä¸ªé¾è¡¨ãå ¶å ·ä½åæ³æ¯ï¼å¦æåç°ä¸æ å²çªï¼ååæå ¥çèç¹ä»¥é¾è¡¨çå½¢å¼è¿½å å°åä¸ä¸ªèç¹çåé¢ã
è¿ç§ä½¿ç¨é¾è¡¨è§£å³å²çªçæ¹æ³å«åï¼æé¾æ³ï¼åå«é¾å°åæ³ï¼ãHashMap使ç¨çå°±æ¯æé¾æ³ï¼æé¾æ³æ¯å²çªåç以åç解å³æ¹æ¡ã
Qï¼æäºæé¾æ³ï¼å°±ä¸ç¨æ å¿åçå²çªåï¼
Aï¼å¹¶ä¸æ¯ï¼ç±äºå²çªçèç¹ä¼ä¸åçå¨é¾è¡¨ä¸è¿½å ï¼å¤§éçå²çªä¼å¯¼è´å个é¾è¡¨è¿é¿ï¼ä½¿æ¥è¯¢æ§è½éä½ãæ以ä¸ä¸ªå¥½çæ£å表çå®ç°åºè¯¥ä»æºå¤´ä¸åå°å²çªåççå¯è½æ§ï¼å²çªåççæ¦çååå¸å½æ°è¿åå¼çååç¨åº¦æç´æ¥å ³ç³»ï¼å¾å°çåå¸å¼è¶ååï¼å²çªåççå¯è½æ§è¶å°ã为äºä½¿åå¸å¼æ´ååï¼HashMapå é¨åç¬å®ç°äºhash()æ¹æ³ã
以ä¸æ¯æ£å表çåå¨ç»æï¼ä½æ¯å¨è¢«è¿ç¨å°HashMapä¸æ¶è¿æå ¶ä»éè¦æ³¨æçå°æ¹ï¼è¿éä¼è¯¦ç»è¯´æã
ç°å¨æä»¬æ¸ æ¥äºæ£å表çåå¨ç»æï¼ç»å¿ç人åºè¯¥å·²ç»åç°äºä¸ä¸ªé®é¢ï¼Javaä¸æ°ç»çé¿åº¦æ¯åºå®çï¼æ 论åå¸å½æ°æ¯å¦ååï¼éçæå ¥å°æ£å表ä¸æ°æ®çå¢å¤ï¼å¨æ°ç»é¿åº¦ä¸åçæ åµä¸ï¼é¾è¡¨çé¿åº¦ä¼ä¸æå¢å ãè¿ä¼å¯¼è´é¾è¡¨æ¥è¯¢æ§è½ä¸ä½³ç缺ç¹åºç°å¨æ£å表ä¸ï¼ä»è使æ£å表失å»åæ¬çæä¹ã为äºè§£å³è¿ä¸ªé®é¢ï¼HashMapå¼å ¥äºæ©å®¹ä¸è´è½½å åã
以ä¸æ¯åæ©å®¹ç¸å ³çä¸äºæ¦å¿µå解éï¼
Psï¼æ©å®¹è¦éæ°è®¡ç®ä¸æ ï¼æ©å®¹è¦éæ°è®¡ç®ä¸æ ï¼æ©å®¹è¦éæ°è®¡ç®ä¸æ ï¼å 为ä¸æ ç计ç®åæ°ç»é¿åº¦æå ³ï¼é¿åº¦æ¹åï¼ä¸æ ä¹åºå½éæ°è®¡ç®ã
å¨1.8åå ¶ä»¥ä¸çjdkçæ¬ä¸ï¼HashMapåå¼å ¥äºçº¢é»æ ã
红é»æ çå¼å ¥è¢«ç¨äºæ¿æ¢é¾è¡¨ï¼ä¸æ说å°ï¼å¦æå²çªè¿å¤ï¼ä¼å¯¼è´é¾è¡¨è¿é¿ï¼éä½æ¥è¯¢æ§è½ï¼ååçhashå½æ°è½ææçç¼è§£å²çªè¿å¤ï¼ä½æ¯å¹¶ä¸è½å®å ¨é¿å ãæ以HashMapå å ¥äºå¦ä¸ç§è§£å³æ¹æ¡ï¼å¨å¾é¾è¡¨å追å èç¹æ¶ï¼å¦æåç°é¾è¡¨é¿åº¦è¾¾å°8ï¼å°±ä¼å°é¾è¡¨è½¬ä¸ºçº¢é»æ ï¼ä»¥æ¤æåæ¥è¯¢çæ§è½ã
mimikatz源码分析-lsadump模块(注册表)
mimikatz是一款内网渗透中的强大工具,本文将深入分析其lsadump模块中的sam部分,探索如何从注册表获取用户哈希。
首先,简要了解一下Windows注册表hive文件的结构。hive文件结构类似于PE文件,包括文件头和多个节区,每个节区又有节区头和巢室。其中,巢箱由HBASE_BLOCK表示,巢室由BIN和CELL表示,整体结构被称为“储巢”。通过分析hive文件的结构图,可以更直观地理解其内部组织。
在解析过程中,需要关注的关键部分包括块的签名(regf)和节区的签名(hbin)。这些签名对于定位和解析注册表中的数据至关重要。
接下来,深入解析mimikatz的解析流程。在具备sam文件和system文件的情况下,主要分为以下步骤:获取注册表system的句柄、读取计算机名和解密密钥、获取注册表sam的句柄以及读取用户名和用户哈希。若无sam文件和system文件,mimikatz将直接通过官方API读取本地机器的注册表。
在mimikatz中,会定义几个关键结构体,包括用于标识操作的注册表对象和内容的结构体(PKULL_M_REGISTRY_HANDLE)以及注册表文件句柄结构体(HKULL_M_REGISTRY_HANDLE)。这些结构体包含了文件映射句柄、映射到调用进程地址空间的位置、巢箱的起始位置以及用于查找子键和子键值的键巢室。
在获取注册表“句柄”后,接下来的任务是获取计算机名和解密密钥。密钥位于HKLM\SYSTEM\ControlSet\Current\Control\LSA,通过查找键值,将其转换为四个字节的密钥数据。利用这个密钥数据,mimikatz能够解析出最终的密钥。
对于sam文件和system文件的操作,主要涉及文件映射到内存的过程,通过Windows API(CreateFileMapping和MapViewOfFile)实现。这些API使得mimikatz能够在不占用大量系统资源的情况下,方便地处理大文件。
在获取了注册表系统和sam的句柄后,mimikatz会进一步解析注册表以获取计算机名和密钥。对于密钥的获取,mimikatz通过遍历注册表项,定位到特定的键值,并通过转换宽字符为字节序列,最终组装出密钥数据。
接着,解析过程继续进行,获取用户名和用户哈希。在解析sam键时,mimikatz首先会获取SID,然后遍历HKLM\SAM\Domains\Account\Users,解析获取用户名及其对应的哈希。解析流程涉及多个步骤,包括定位samKey、获取用户名和用户哈希,以及使用samKey解密哈希数据。
对于samKey的获取,mimikatz需要解密加密的数据,使用syskey作为解密密钥。解密过程根据加密算法(rc4或aes)有所不同,但在最终阶段,mimikatz会调用系统函数对数据进行解密,从而获取用户哈希。
在完成用户哈希的解析后,mimikatz还提供了一个额外的功能:获取SupplementalCreds。这个功能可以解析并解密获取对应用户的SupplementalCredentials属性,包括明文密码及哈希值,为用户提供更全面的哈希信息。
综上所述,mimikatz通过解析注册表,实现了从系统中获取用户哈希的高效功能,为内网渗透提供了强大的工具支持。通过深入理解其解析流程和关键结构体的定义,可以更好地掌握如何利用mimikatz进行深入的安全分析和取证工作。
Redis7.0源码阅读:哈希表扩容、缩容以及rehash
当哈希值相同发生冲突时,Redis 使用链表法解决,将冲突的键值对通过链表连接,但随着数据量增加,冲突加剧,查找效率降低。负载因子衡量冲突程度,负载因子越大,冲突越严重。为优化性能,Redis 需适时扩容,将新增键值对放入新哈希桶,减少冲突。
扩容发生在 setCommand 部分,其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。
扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。
哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。
rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,减少冲突。dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。
在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,实现 rehash 结果的整合。
综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。
Hermes源码分析(二)——解析字节码
前面一节 讲到字节码序列化为二进制是有固定的格式的,这里我们分析一下源码里面是怎么处理的这里可以看到首先写入的是魔数,他的值为
对应的二进制见下图,注意是小端字节序
第二项是字节码的版本,笔者的版本是,也即 上图中的4a
第三项是源码的hash,这里采用的是SHA1算法,生成的哈希值是位,因此占用了个字节
第四项是文件长度,这个字段是位的,也就是下图中的为0aa,转换成十进制就是,实际文件大小也是这么多
后面的字段类似,就不一一分析了,头部所有字段的类型都可以在BytecodeFileHeader.h中看到,Hermes按照既定的内存布局把字段写入后再序列化,就得到了我们看到的字节码文件。
这里写入的数据很多,以函数头的写入为例,我们调用了visitFunctionHeader方法,并通过byteCodeModule拿到函数的签名,将其写入函数表(存疑,在实际的文件中并没有看到这一部分)。注意这些数据必须按顺序写入,因为读出的时候也是按对应顺序来的。
我们知道react-native 在加载字节码的时候需要调用hermes的prepareJavaScript方法, 那这个方法做了些什么事呢?
这里做了两件事情:
1. 判断是否是字节码,如果是则调用createBCProviderFromBuffer,否则调用createBCProviderFromSrc,我们这里只关注createBCProviderFromBuffer
2.通过BCProviderFromBuffer的构造方法得到文件头和函数头的信息(populateFromBuffer方法),下面是这个方法的实现。
BytecodeFileFields的populateFromBuffer方法也是一个模版方法,注意这里调用populateFromBuffer方法的是一个 ConstBytecodeFileFields对象,他代表的是不可变的字节码字段。
细心的读者会发现这里也有visitFunctionHeaders方法, 这里主要为了复用visitBytecodeSegmentsInOrder的逻辑,把populator当作一个visitor来按顺序读取buffer的内容,并提前加载到BytecodeFileFields里面,以减少后面执行字节码时解析的时间。
Hermes引擎在读取了字节码之后会通过解析BytecodeFileHeader这个结构体中的字段来获取一些关键信息,例如bundle是否是字节码格式,是否包含了函数,字节码的版本是否匹配等。注意这里我们只是解析了头部,没有解析整个字节码,后面执行字节码时才会解析剩余的部分。
evaluatePreparedJavaScript这个方法,主要是调用了HermesRuntime的 runBytecode方法,这里hermesPrep时上一步解析头部时获取的BCProviderFromBuffer实例。
runBytecode这个方法比较长,主要做了几件事情:
这里说明一下,Domain是用于垃圾回收的运行时模块的代理, Domain被创建时是空的,并跟随着运行时模块进行传播, 在运行时模块的整个生命周期内都一直存在。在某个Domain下创建的所有函数都会保持着对这个Domain的强引用。当Domain被回收的时候,这个Domain下的所有函数都不能使用。
未完待续。。。
为什么HashMap是线程不安全的
这是《Java程序员进阶之路》专栏的第篇,我们来聊聊为什么HashMap是线程不安全的。、多线程下扩容会死循环众所周知,HashMap是通过拉链法来解决哈希冲突的,也就是当哈希冲突时,会将相同哈希值的键值对通过链表的形式存放起来。
JDK7时,采用的是头部插入的方式来存放链表的,也就是下一个冲突的键值对会放在上一个键值对的前面(同一位置上的新元素被放在链表的头部)。扩容的时候就有可能导致出现环形链表,造成死循环。
resize方法的源码:
//newCapacity为新的容量voidresize(intnewCapacity){ //小数组,临时过度下Entry[]oldTable=table;//扩容前的容量intoldCapacity=oldTable.length;//MAXIMUM_CAPACITY为最大容量,2的次方=1<<if(oldCapacity==MAXIMUM_CAPACITY){ //容量调整为Integer的最大值0x7fffffff(十六进制)=2的次方-1threshold=Integer.MAX_VALUE;return;}//初始化一个新的数组(大容量)Entry[]newTable=newEntry[newCapacity];//把小数组的元素转移到大数组中transfer(newTable,initHashSeedAsNeeded(newCapacity));//引用新的大数组table=newTable;//重新计算阈值threshold=(int)Math.min(newCapacity*loadFactor,MAXIMUM_CAPACITY+1);}transfer方法用来转移,将小数组的元素拷贝到新的数组中。
voidtransfer(Entry[]newTable,booleanrehash){ //新的容量intnewCapacity=newTable.length;//遍历小数组for(Entry<K,V>e:table){ while(null!=e){ //拉链法,相同key上的不同值Entry<K,V>next=e.next;//是否需要重新计算hashif(rehash){ e.hash=null==e.key?0:hash(e.key);}//根据大数组的容量,和键的hash计算元素在数组中的下标inti=indexFor(e.hash,newCapacity);//同一位置上的新元素被放在链表的头部e.next=newTable[i];//放在新的数组上newTable[i]=e;//链表上的下一个元素e=next;}}}注意e.next=newTable[i]和newTable[i]=e这两行代码,就会将同一位置上的新元素被放在链表的头部。
扩容前的样子假如是下面这样子。
那么正常扩容后就是下面这样子。
假设现在有两个线程同时进行扩容,线程A在执行到newTable[i]=e;被挂起,此时线程A中:e=3、next=7、e.next=null
线程B开始执行,并且完成了数据转移。
此时,7的next为3,3的next为null。
随后线程A获得CPU时间片继续执行newTable[i]=e,将3放入新数组对应的位置,执行完此轮循环后线程A的情况如下:
执行下一轮循环,此时e=7,原本线程A中7的next为5,但由于table是线程A和线程B共享的,而线程B顺利执行完后,7的next变成了3,那么此时线程A中,7的next也为3了。
采用头部插入的方式,变成了下面这样子:
好像也没什么问题,此时next=3,e=3。
进行下一轮循环,但此时,由于线程B将3的next变为了null,所以此轮循环应该是最后一轮了。
接下来当执行完e.next=newTable[i]即3.next=7后,3和7之间就相互链接了,执行完newTable[i]=e后,3被头插法重新插入到链表中,执行结果如下图所示:
套娃开始,元素5也就成了弃婴,惨~~~
不过,JDK8时已经修复了这个问题,扩容时会保持链表原来的顺序,参照HashMap扩容机制的这一篇。
、多线程下put会导致元素丢失正常情况下,当发生哈希冲突时,HashMap是这样的:
但多线程同时执行put操作时,如果计算出来的索引位置是相同的,那会造成前一个key被后一个key覆盖,从而导致元素的丢失。
put的源码:
finalVputVal(inthash,Kkey,Vvalue,booleanonlyIfAbsent,booleanevict){ Node<K,V>[]tab;Node<K,V>p;intn,i;//步骤①:tab为空则创建if((tab=table)==null||(n=tab.length)==0)n=(tab=resize()).length;//步骤②:计算index,并对null做处理if((p=tab[i=(n-1)&hash])==null)tab[i]=newNode(hash,key,value,null);else{ Node<K,V>e;Kk;//步骤③:节点key存在,直接覆盖valueif(p.hash==hash&&((k=p.key)==key||(key!=null&&key.equals(k))))e=p;//步骤④:判断该链为红黑树elseif(pinstanceofTreeNode)e=((TreeNode<K,V>)p).putTreeVal(this,tab,hash,key,value);//步骤⑤:该链为链表else{ for(intbinCount=0;;++binCount){ if((e=p.next)==null){ p.next=newNode(hash,key,value,null);//链表长度大于8转换为红黑树进行处理if(binCount>=TREEIFY_THRESHOLD-1)//-1for1sttreeifyBin(tab,hash);break;}//key已经存在直接覆盖valueif(e.hash==hash&&((k=e.key)==key||(key!=null&&key.equals(k))))break;p=e;}}//步骤⑥、直接覆盖if(e!=null){ //existingmappingforkeyVoldValue=e.value;if(!onlyIfAbsent||oldValue==null)e.value=value;afterNodeAccess(e);returnoldValue;}}++modCount;//步骤⑦:超过最大容量就扩容if(++size>threshold)resize();afterNodeInsertion(evict);returnnull;}问题发生在步骤②这里:
if((p=tab[i=(n-1)&hash])==null)tab[i]=newNode(hash,key,value,null);两个线程都执行了if语句,假设线程A先执行了tab[i]=newNode(hash,key,value,null),那table是这样的:
接着,线程B执行了tab[i]=newNode(hash,key,value,null),那table是这样的:
3被干掉了。
、put和get并发时会导致get到null线程A执行put时,因为元素个数超出阈值而出现扩容,线程B此时执行get,有可能导致这个问题。
注意来看resize源码:
finalNode<K,V>[]resize(){ Node<K,V>[]oldTab=table;intoldCap=(oldTab==null)?0:oldTab.length;intoldThr=threshold;intnewCap,newThr=0;if(oldCap>0){ //超过最大值就不再扩充了,就只好随你碰撞去吧if(oldCap>=MAXIMUM_CAPACITY){ threshold=Integer.MAX_VALUE;returnoldTab;}//没超过最大值,就扩充为原来的2倍elseif((newCap=oldCap<<1)<MAXIMUM_CAPACITY&&oldCap>=DEFAULT_INITIAL_CAPACITY)newThr=oldThr<<1;//doublethreshold}elseif(oldThr>0)//initialcapacitywasplacedinthresholdnewCap=oldThr;else{ //zeroinitialthresholdsignifiesusingdefaultsnewCap=DEFAULT_INITIAL_CAPACITY;newThr=(int)(DEFAULT_LOAD_FACTOR*DEFAULT_INITIAL_CAPACITY);}//计算新的resize上限if(newThr==0){ floatft=(float)newCap*loadFactor;newThr=(newCap<MAXIMUM_CAPACITY&&ft<(float)MAXIMUM_CAPACITY?(int)ft:Integer.MAX_VALUE);}threshold=newThr;@SuppressWarnings({ "rawtypes","unchecked"})Node<K,V>[]newTab=(Node<K,V>[])newNode[newCap];table=newTab;}线程A执行完table=newTab之后,线程B中的table此时也发生了变化,此时去get的时候当然会get到null了,因为元素还没有转移。
为了便于大家更系统化地学习Java,二哥已经将《Java程序员进阶之路》专栏开源到GitHub上了,大家只需轻轻地star一下,就可以和所有的小伙伴一起打怪升级了。
GitHub地址:/itwanger/toBeBetterJavaer
汇金出手增持四大行 系时隔8年再出手
文字wap源码_wap文字游戏制作
源码的近义词
记账 php源码_记账php源码
送外卖的大学教师:作家不晓骑手苦,“写的东西有什么价值”
hashmapremove方法源码_hashmap的remove源码