1.RUST标准库双向链表LinkedList<T>源代码分析
2.ZMQ源码详细解析 之 进程内通信流程
3.5日振幅小于5%的版源码公式源码
4.文华财经T8更新版量化交易策略模型源码
5.Python数据分析实战-实现T检验(附源码和实现效果)
6.Thrift入门 | Thrift框架分析(源码角度)
RUST标准库双向链表LinkedList<T>源代码分析
本文解析RUST标准库中的双向链表LinkedList。深入理解此数据结构的版源码关键,有助于掌握更多相关知识。版源码本书对LinkedList的版源码分析主要集中在RUST与其它语言的差异上,旨在帮助读者全面理解。版源码
LinkedList类型结构定义的版源码直接搜索Qt源码核心在于Node方法,其定义了链表中节点的版源码实现逻辑。
创建并操作LinkedList涉及基本增减方法。版源码如在头部添加或删除成员,版源码以及在尾部进行相应的版源码操作。这些方法展现了LinkedList在RUST中的版源码高效管理。
通过Iterator实现对List的版源码访问,其相关结构代码展示了LinkedList的版源码便利性。使用into_iter()和iter_mut()等方法,版源码可对列表进行迭代操作。版源码
除此之外,LinkedList的其他实现细节虽略去,但上述关键点已覆盖其核心功能。通过本文的解析,读者能更好地掌握RUST标准库中的LinkedList。
ZMQ源码详细解析 之 进程内通信流程
ZMQ进程内通信流程解析
ZMQ的arduino 物联网源码核心进程内通信原理相当直接,它利用线程间的两个队列(我称为pipe)进行消息交换。每个线程通过一个队列发送消息,从另一个队列接收。ZMQ负责将pipe绑定到对应线程,并在send和recv操作中通过pipe进行数据传输,非常简单。
我们通过一个示例程序来理解源码的工作流程。程序首先创建一个简单的hello world程序,加上sleep是为了便于分析流程。程序从`zmq_ctx_new()`开始,这个函数创建了一个上下文(context),这是ZMQ操作的起点。
在创建socket时,如`zmq_socket(context, ZMQ_REP)`,实际调用了`ctx->create_socket`,socket类型决定了其特性。rep_t是基于router_t的特化版本,主要通过限制router_t的某些功能来实现响应特性。socket的创建涉及到诸如endpoint、slot和 mailbox等概念,Linux源码编译环境它们在多线程环境中协同工作。
进程内通信的建立通过`zmq_bind(responder, "inproc://hello")`来实现,这个端点被注册到上下文的endpoint集合中,便于其他socket找到通信通道。zmq的优化主要集中在关键路径上,避免对一次性操作过度优化。
接下来的recv函数是关键,即使没有连接,它也会尝试接收消息。`xrecv`函数根据进程状态可能阻塞或返回EAGAIN。recv过程涉及`msg_t`消息的处理,以及与`signaler`和`mailbox`的交互,这些组件构成了无锁通信的核心。
发送端通过`connect`函数建立连接,创建连接通道,并将pipe关联到socket。这个过程涉及无锁队列的管理,如ypipe_t和pipe_t,以及如何均衡发送和接收。
总结来说,软件系统网站源码ZMQ进程内通信的核心是通过管道、队列和事件驱动机制,实现了线程间的数据交换。随着对ZMQ源码的深入,会更深入理解这些基础组件的设计和工作原理。
5日振幅小于5%的公式源码
这没啥用,建议还是弄点实在的比较好。
下面是通达信版的振幅公式源码:
T: (HHV(H,5) - LLV(L,5))/REF(O,4) < 0.;
该公式源码表示的是5日内最高价与最低价的差值与前一日开盘价的比值小于0.,用来判断股票价格的波动幅度是否在一定范围内。然而,这并未提供实际的指导意义,因此建议寻找更有用的指标进行参考。
在股市分析中,需要考虑多种因素才能做出准确的判断,单凭这个公式可能无法全面评估股票的走势。因此,建议投资者结合其他技术指标和基本面分析,综合判断投资决策。
具体来说,投资者可以结合MACD、spring源码分析pdfKDJ、RSI等技术指标,以及公司的财务状况、行业地位、市场环境等因素,进行深入分析。同时,注意风险管理,合理设置止损点,避免过度追涨杀跌。
总结来说,虽然通达信版的振幅公式源码可以提供一定参考,但在实际操作中,还需要结合其他因素进行综合分析。因此,建议投资者在使用这类公式时保持审慎态度,避免盲目跟风。
文华财经T8更新版量化交易策略模型源码
文华财经T8更新版量化交易策略模型源码:
此量化交易策略模型源码采用了一系列技术指标和条件,旨在通过自动化方式提升交易决策的效率和准确性。代码中定义了关键变量以支持多头和空头策略的实施。
在多头策略方面,代码通过设置多个条件来识别买入时机。若“SKLOW”超过“S”(一个计算得到的价格阈值)且“SKVOL”(成交量)大于零,且当前收盘价高于“REF(H+1*MINPRICE,BARSSK)”(过去某时段最高价),则发出买入指令(BP)。
同样地,空头策略也设置了相应的买入条件。当“BKHIGH”(一个计算得到的高点)超过“B”(基础价格)且“BKVOL”(成交量)大于零,同时满足一定条件,代码会触发卖出指令(SP)。
此外,源码中还包含了自动过滤规则(AUTOFILTER),以及设置特定价格类型(SETSIGPRICETYPE)和价格取值规则(SETOTHERPRICE),以进一步优化交易决策流程。
Python数据分析实战-实现T检验(附源码和实现效果)
T检验是一种用于比较两个样本均值是否存在显著差异的统计方法。广泛应用于各种场景,例如判断两组数据是否具有显著差异。使用T检验前,需确保数据符合正态分布,并且样本方差具有相似性。T检验有多种变体,包括独立样本T检验、配对样本T检验和单样本T检验,针对不同实验设计和数据类型选择适当方法至关重要。
实现T检验的Python代码如下:
python
import numpy as np
import scipy.stats as stats
# 示例数据
data1 = np.array([1, 2, 3, 4, 5])
data2 = np.array([2, 3, 4, 5, 6])
# 独立样本T检验
t_statistic, p_value = stats.ttest_ind(data1, data2)
print(f"T统计量:{ t_statistic}")
print(f"显著性水平:{ p_value}")
# 根据p值判断差异显著性
if p_value < 0.:
print("两个样本的均值存在显著差异")
else:
print("两个样本的均值无显著差异")
运行上述代码,将输出T统计量和显著性水平。根据p值判断,若p值小于0.,则可认为两个样本的均值存在显著差异;否则,认为两者均值无显著差异。
实现效果
根据上述代码,执行T检验后,得到的输出信息如下:
python
T统计量:-0.
显著性水平:0.
根据输出结果,T统计量为-0.,显著性水平为0.。由于p值大于0.,我们无法得出两个样本均值存在显著差异的结论。因此,可以判断在置信水平为0.时,两个样本的均值无显著差异。
Thrift入门 | Thrift框架分析(源码角度)
深入理解Thrift框架,首先需要掌握其基本概念。Thrift是一个用于跨语言通信的框架,其设计初衷是提高开发效率和简化多语言环境下的服务调用。以下是Thrift框架的核心组成部分及其功能概述。 Thrift框架主要包括两个层:Protocol层和Transport层。Protocol层主要负责数据的序列化和反序列化,而Transport层则负责数据流的传输。Protocol层中包含多种序列化协议,常见的有Compact、Binary、JSON等,它们都继承自TProtocol基类,提供读写抽象操作。 以TBinaryProtocol为例,它是一种基于二进制的序列化协议。序列化过程主要包括以下几个关键步骤:writeMessageBegin:用于序列化message的开始部分,包括thrift版本、message名称和seqid等信息。
writeFieldStop:在所有字段序列化完成后,写入T_STOP标识符,表示序列化结束。
writeI、writeString、writeBinary:分别用于序列化整型、字符串和二进制数据。
在读取操作中,这些write操作的逆操作被执行,以实现反序列化。Protocol层的实现细节主要体现在读写函数的调用和抽象上。 Transport层负责数据的实际传输,它提供了一系列抽象方法,如isOpen、open、close、read和write等,用于管理底层连接的打开、关闭和数据读写。常见的Transport层协议包括TFramedTransport和TSocket。TFramedTransport通过缓冲区管理,实现了数据的分帧传输,而TSocket则基于原始的socket实现网络通信。 为了进一步提高性能,Transport层可能包含缓存和压缩等功能,以优化数据传输效率。Thrift中,TSocket作为底层传输层,负责与原始socket交互,而TFramedTransport等上层Transport则在TSocket的基础上进行扩展,实现数据的高效传输。 总结,Thrift框架通过其Protocol层和Transport层,实现了跨语言、高效的数据传输。深入理解这些组件及其工作原理,对于开发和优化基于Thrift的分布式系统具有重要意义。