欢迎访问皮皮网官网
皮皮网

【thinkphp源码授权】【疯狂宝石竞猜游戏源码】【c语言压枪源码】机械源码_机器源码

时间:2024-12-23 22:53:43 分类:知识 来源:筷子夹肉源码

1.【干货|开源MIT Min cheetah机械狗设计(二十三)】运动控制器源码解析---控制和优化思想
2.[1](含源码)通过关节力矩指令控制LBR/iiwa机械臂运动
3.Arduino开源机器人汇总(基于 GRBL或Marlin)
4.干货|开源MIT Min cheetah机械狗设计(二十一)运动控制器源码解析---刚体动力学建模
5.干货|开源MIT Min cheetah机械狗设计(十四)运动控制器源码解析---四足机器人浮动基动力学模型创建
6.干货|开源MIT Min cheetah机械狗设计(二十)运动控制器源码解析---Locomotion程序架构

机械源码_机器源码

【干货|开源MIT Min cheetah机械狗设计(二十三)】运动控制器源码解析---控制和优化思想

       本文将深入探讨开源MIT Min Cheetah机械狗设计的机械机器控制与优化策略,重点关注MPC控制和QP优化。源码源码尽管WBC辅助MPC的机械机器内容在前文已有详述,这里主要聚焦控制理论的源码源码应用。

       控制的机械机器核心在于通过状态方程描述物体运动规律,如牛顿第二定律,源码源码thinkphp源码授权将连续问题离散化以适应计算机处理。机械机器状态空间表达式,源码源码如[公式],机械机器揭示了物理定律,源码源码如位移与速度的机械机器关系和电容与电流的关系。控制策略的源码源码优化在于选择最适合的路径,如LQR关注整个时间的机械机器最优,而MPC关注当前时刻对过去的源码源码影响。

       优化问题涉及代价函数和权重设置。机械机器LQR的代价函数[公式],权重为[公式],而MPC更复杂,如[公式],可加入不等式约束。MPC通过QP求解器,如Matlab或C++,实现开环优化,允许灵活设置约束条件。

       与传统PID控制相比,现代控制理论如状态空间模型更精确,但在实际应用中,疯狂宝石竞猜游戏源码复杂项目如MIT机械狗,可能仍需依赖传统控制如PD,配合现代理论以提升性能。控制算法在无人机、机器人和汽车行业广泛应用,尤其在动力学模型成熟的情况下。

       机器学习和强化学习在参数辨识和环境适应方面提供了补充,但强化学习对于规则明确的环境表现较好,未来有望在机器人领域有更多发展。接下来,我们将转向机械狗的仿真实现,以及后续的扩展功能,如路径规划和激光雷达扫描。

[1](含源码)通过关节力矩指令控制LBR/iiwa机械臂运动

       本文改编自 MATLAB 的自带帮助文档,介绍了如何使用 MATLAB 和 V-REP 进行 LBR/iiwa 机械臂的计算力矩控制仿真。相较于使用 Gazebo 的原例程,本例程旨在通过将 Gazebo 替换为 V-REP,实现 V-REP 和 MATLAB 的通信与数据交互。本文将逐步指导实现这一仿真过程。

       首先,构建项目结构,包括用于存放场景文件、通信文件和控制文件的三个子文件夹。确保 MATLAB 版本不低于 b,以便加载 URDF 文件。然后,c语言压枪源码利用 MATLAB 的自带 LBR/iiwa 机械臂的 URDF 文件及三维模型文件,创建场景文件并将其加载至 V-REP 中。处理可能出现的路径兼容性问题,确保仿真环境的搭建无误。

       通信准备阶段,复制 V-REP 相关组件至 MATLAB 文件夹,并利用 vrchk.m 文件进行通信失败类型提示。创建 iiwa_computer_torque_control_workcell_init.m 函数文件,用于初始化 V-REP 与 MATLAB 之间的通信链路,包括获取关节句柄和进行 streaming 初始化。

       接下来,实现与 V-REP 的通信代码。在 iiwa_computed_torque_control 文件夹内,建立 iiwa_computed_torque_control.m 文件,其中包含通信代码框架,以适应后续的控制逻辑。在此阶段,主要关注同步模式控制的实现,确保机械臂在 MATLAB 的控制指令下按照预定轨迹运行。

       在控制代码编写中,遵循关节力矩控制原理,选择同步模式进行仿真。此模式下,控制输入与 V-REP 的动作同步,即在 MATLAB 发出控制指令后,V-REP 在预设的脉聊交友php源码时间间隔内执行该指令。通过调用 V-REP 的 API,实现关节位置、速度与加速度的控制,以及力矩的计算与应用,使机械臂按照预期轨迹运行。

       为了保证控制的准确性,进行数据处理以对比前馈和反馈力矩,以及期望与实际关节位置和速度。此阶段的分析结果有助于优化控制算法,确保机械臂能够精确地按照预设路径运动。

       最后,进行仿真运行前的系统配置,确保 V-REP 和 MATLAB 都已关闭,然后按照特定流程启动 V-REP,加载场景文件,并在 MATLAB 中运行相关代码。通过观察 V-REP 中的仿真动画,验证仿真过程的正确性与稳定性。

       此过程不仅适用于学术研究和学习,也为实际应用提供了参考,旨在推动机器人控制技术的发展。通过分享此例程,旨在激发更多人对机器人控制的兴趣,并欢迎各界反馈与建议,共同促进技术进步。

Arduino开源机器人汇总(基于 GRBL或Marlin)

       Arduino开源机器人汇总(基于GRBL或Marlin)

       GRBL,指标源码开盘价作为开源的嵌入式CNC框架,因其高效和低成本,被广泛应用于多种开源机器人,如绘图机器人、机械手臂等,它的代码质量高且易于定制。

       XYZ结构机器人

       XYZ结构常见于CNC设备,如3D打印机,每个轴独立控制,运动规划简单,步进数与滑台位置关系明确。推荐入门项目如DrawBot绘图机器人,使用GRBL控制。

       CoreXY结构

       CoreXY结构以单同步带控制XY运动,紧凑且能提供更大的工作空间,运动速度快。大鱼DIY写字机器人V2.0 Pro就采用了这种结构。

       经典项目举例

DrawBot V1.1: henryarnold和MoustafaElkady的开源作品,GRBL控制。

DREMEL CNC: Nikodem Bartnik设计,使用GRBL,教程详尽。

INDYMILL: 金属版CNC升级,GRBL控制,付费安装教程。

大鱼DIY写字机器人V2.0 Pro: GRBL支持,开源且有视频教程。

sffactory 机械臂: Marlin 2.0控制,结构改进,内容丰富。

DArm: 廖洽源作品,Marlin 2.0,提供Solidworks工程。

Drawbot机械臂: Marlin控制,基于DArm设计,但未开源源码。

UArm Swift Pro: GRBL-Mega/Marlin版本,金属机身,结构封闭。

Mirobot六自由度机械臂: 周冬旭博士作品,GRBL控制,固件不开源。

MK2 Plus 机械臂: GRBL控制,作者为Jacky Le,基于MK1的改进。

干货|开源MIT Min cheetah机械狗设计(二十一)运动控制器源码解析---刚体动力学建模

       本篇内容深入探讨了开源MIT Min cheetah机械狗设计系列文章中的刚体动力学模型。刚体动力学模型是机械狗设计的核心,是麻省理工团队独立开发的动力学算法的重要基础。动力学算法的理论依据参考了Roy Featherstone的文章《Rigid Body Dynamics Algorithms》,该文章提出了一种新的六维运动空间和力空间,概念类似于运动旋量和力旋量。

       商业动力学运算库如CoppeliaSim的Bullet 2.和单独的动力学求解库pinocchio、frost、drake等在机械狗设计中得到了广泛应用。机械狗设计所用的动力学算法设计思想包含牛顿欧拉方程、坐标系选取问题、六维运动空间等核心概念。牛顿欧拉方程是力学基础,描述了力与加速度和扭矩之间的关系,包括了定点和定轴转动的公式。坐标系的选择对动力学和运动学分析至关重要,不同坐标系的设计使计算变得更加高效。Pl¨ucker坐标系的引入实现了平动和转动的统一表示,简化了动力学方程,方便了后续程序的编写。

       在六维运动空间中,刚体的速度和空间力被统一表示,使得动力学分析更加简洁。动力学模型编程中,动力学公式和运动学树的概念被整合进代码中,以方便处理和编程。文章最后指出,动力学知识的探讨还将继续,后续计划将增加视觉感知、激光雷达扫描等机械狗的智能功能,以提升其性能。

干货|开源MIT Min cheetah机械狗设计(十四)运动控制器源码解析---四足机器人浮动基动力学模型创建

       干货MIT Min Cheetah机械狗设计详解(十四):动力学模型创建

       对于机器人爱好者和初入机器人领域的专业人士,开源MIT Min Cheetah系列设计无疑是一份宝贵资源。本文将深入探讨RobotRunner核心模块,包括数据更新、步态规划、控制算法和命令发送,尤其是关键的浮动基动力学模型构建。

       首先,我们从单刚体动力学模型开始,简化机械狗的复杂动态,计算足底反作用力,但此方法在高速运动时并不适用。为解决高速情况下的适应性,浮动基动力学模型引入,它在单刚体基础上优先满足动态响应,如WBC控制器的需要。模型创建包括:

       浮动基动力学模型参数设置:定义机械狗整体的配置空间和关节自由度,引入6个表示身体浮动基的自由度。

       广义惯量和空间惯量:每个连杆和关节电机的广义惯性张量(包括质量、质心位置和旋转惯量)是动力学计算的基础。

       连杆位置向量:这些参数用于后续的运动旋量计算。

       浮动基动力学模型:以拉格朗日单腿动力学为基础,考虑机械狗整体的运动状态和力矩映射。

       动力学方程的构造:包括动力学方程组、约束方程和构型角度约束,以及外力和转矩的关系。

       代码中,通过`forwardKinematics()`函数计算关节和连杆的空间变换,为求解质量矩阵、非惯性力矩阵和接触雅可比矩阵做准备。在冗余自由度的系统中,浮动基动力学模型与WBC结合,最终计算出关节的控制参数。

       总结,浮动基动力学模型的创建是实现高精度控制的关键步骤,它为后续的动力学方程求解提供了关键参数。理解这些核心概念,将有助于深入理解四足机器人动态控制的奥秘。

干货|开源MIT Min cheetah机械狗设计(二十)运动控制器源码解析---Locomotion程序架构

       开源MIT Min cheetah机械狗设计第篇,讲解Locomotion程序架构。

       本文集中解析机械狗的运动模式,涵盖种模式,包括被动、关节运动、阻抗控制、站立、平衡站立、奔跑、恢复站立、视觉辅助、后空翻、前空翻。每种模式继承自FSM_State,实现状态转移与控制。

       程序核心在于FSM_StatesList中的运动模式调度,runFSM()函数对模式进行管理。

       重点介绍奔跑模式,它依赖MPC(ConvexMPCLocomotion)与WBC(WBC_Ctrl)控制器。MPC部分已前文讨论,本篇聚焦于WBC实现。

       首先,初始化MPC,作为WBC的一部分。WBC运行于FSM_State_Locomotion的run()函数,通过循环调用控制步骤LocomotionControlStep()。

       控制步骤中,MPC预测足端反作用力Fr_des[i],WBC求解关节扭矩、加速度、速度与位置。腿部控制器LegController据此发送关节扭矩、速度与位置。

       核心在于运行WBC控制器WBC_Ctrl::run()与计算过程的_WComputeWBC()函数,通过公式进行计算。

       欲详细了解WBC控制器设计原理,可参考相关文章。

       本篇至此,下篇将深入探讨WBC控制器的程序实现。

copyright © 2016 powered by 皮皮网   sitemap