【因酷源码 下载】【小鱼项目网源码】【暗影最新软件源码】threadpool源码解读

2025-01-11 18:21:42 来源:QT 免费源码 分类:娱乐

1.带你学会区分ScheduledThreadPoolExecutor与Timer
2.java线程池(一):java线程池基本使用及Executors
3.硬核干货:4W字从源码上分析JUC线程池ThreadPoolExecutor的源码实现原理
4.Java原理系列ScheduledThreadPoolExecutor原理用法示例源码详解
5.ThreadPoolExecutor简介&源码解析

threadpool源码解读

带你学会区分ScheduledThreadPoolExecutor与Timer

       æ‘˜è¦ï¼šæœ¬æ–‡ç®€å•ä»‹ç»ä¸‹ScheduledThreadPoolExecutor类与Timer类的区别,ScheduledThreadPoolExecutor类相比于Timer类来说,究竟有哪些优势,以及二者分别实现任务调度的简单示例。

       JDK1.5开始提供ScheduledThreadPoolExecutor类,ScheduledThreadPoolExecutor类继承ThreadPoolExecutor类重用线程池实现了任务的周期性调度功能。在JDK1.5之前,实现任务的周期性调度主要使用的是Timer类和TimerTask类。本文,就简单介绍下ScheduledThreadPoolExecutor类与Timer类的区别,ScheduledThreadPoolExecutor类相比于Timer类来说,究竟有哪些优势,以及二者分别实现任务调度的简单示例。

二者的区别线程角度

       Timer是单线程模式,如果某个TimerTask任务的执行时间比较久,会影响到其他任务的调度执行。

       ScheduledThreadPoolExecutor是多线程模式,并且重用线程池,某个ScheduledFutureTask任务执行的时间比较久,不会影响到其他任务的调度执行。

系统时间敏感度

       Timer调度是基于操作系统的绝对时间的,对操作系统的时间敏感,一旦操作系统的时间改变,则Timer的调度不再精确。

       ScheduledThreadPoolExecutor调度是基于相对时间的,不受操作系统时间改变的影响。

是否捕获异常

       Timer不会捕获TimerTask抛出的异常,加上Timer又是单线程的。一旦某个调度任务出现异常,则整个线程就会终止,其他需要调度的任务也不再执行。

       ScheduledThreadPoolExecutor基于线程池来实现调度功能,某个任务抛出异常后,其他任务仍能正常执行。

任务是否具备优先级

       Timer中执行的TimerTask任务整体上没有优先级的概念,只是按照系统的绝对时间来执行任务。

       ScheduledThreadPoolExecutor中执行的ScheduledFutureTask类实现了java.lang.Comparable接口和java.util.concurrent.Delayed接口,这也就说明了ScheduledFutureTask类中实现了两个非常重要的方法,一个是java.lang.Comparable接口的compareTo方法,一个是java.util.concurrent.Delayed接口的getDelay方法。在ScheduledFutureTask类中compareTo方法实现了任务的比较,距离下次执行的时间间隔短的任务会排在前面,也就是说,距离下次执行的时间间隔短的任务的优先级比较高。而getDelay方法则能够返回距离下次任务执行的时间间隔。

是否支持对任务排序

       Timer不支持对任务的排序。

       ScheduledThreadPoolExecutor类中定义了一个静态内部类DelayedWorkQueue,DelayedWorkQueue类本质上是一个有序队列,为需要调度的每个任务按照距离下次执行时间间隔的大小来排序

能否获取返回的结果

       Timer中执行的TimerTask类只是实现了java.lang.Runnable接口,无法从TimerTask中获取返回的结果。

       ScheduledThreadPoolExecutor中执行的ScheduledFutureTask类继承了FutureTask类,能够通过Future来获取返回的结果。

       é€šè¿‡ä»¥ä¸Šå¯¹ScheduledThreadPoolExecutor类和Timer类的分析对比,相信在JDK1.5之后,就没有使用Timer来实现定时任务调度的必要了。

二者简单的示例

       è¿™é‡Œï¼Œç»™å‡ºä½¿ç”¨Timer和ScheduledThreadPoolExecutor实现定时调度的简单示例,为了简便,我这里就直接使用匿名内部类的形式来提交任务。

Timer类简单示例

       æºä»£ç ç¤ºä¾‹å¦‚下所示。

packageio.binghe.concurrent.lab;importjava.util.Timer;importjava.util.TimerTask;/***@authorbinghe*@version1.0.0*@description测试Timer*/publicclassTimerTest{ publicstaticvoidmain(String[]args)throwsInterruptedException{ Timertimer=newTimer();timer.scheduleAtFixedRate(newTimerTask(){ @Overridepublicvoidrun(){ System.out.println("测试Timer类");}},,);Thread.sleep();timer.cancel();}}

       è¿è¡Œç»“果如下所示。

测试Timer类测试Timer类测试Timer类测试Timer类测试Timer类测试Timer类测试Timer类测试Timer类测试Timer类测试Timer类ScheduledThreadPoolExecutor类简单示例

       æºä»£ç ç¤ºä¾‹å¦‚下所示。

packageio.binghe.concurrent.lab;importjava.util.concurrent.*;/***@authorbinghe*@version1.0.0*@description测试ScheduledThreadPoolExecutor*/publicclassScheduledThreadPoolExecutorTest{ publicstaticvoidmain(String[]args)throwsInterruptedException{ ScheduledExecutorServicescheduledExecutorService=Executors.newScheduledThreadPool(3);scheduledExecutorService.scheduleAtFixedRate(newRunnable(){ @Overridepublicvoidrun(){ System.out.println("测试测试ScheduledThreadPoolExecutor");}},1,1,TimeUnit.SECONDS);//主线程休眠秒Thread.sleep();System.out.println("正在关闭线程池...");//关闭线程池scheduledExecutorService.shutdown();booleanisClosed;//等待线程池终止do{ isClosed=scheduledExecutorService.awaitTermination(1,TimeUnit.DAYS);System.out.println("正在等待线程池中的任务执行完成");}while(!isClosed);System.out.println("所有线程执行结束,线程池关闭");}}

       è¿è¡Œç»“果如下所示。

测试测试ScheduledThreadPoolExecutor测试测试ScheduledThreadPoolExecutor测试测试ScheduledThreadPoolExecutor测试测试ScheduledThreadPoolExecutor测试测试ScheduledThreadPoolExecutor测试测试ScheduledThreadPoolExecutor测试测试ScheduledThreadPoolExecutor测试测试ScheduledThreadPoolExecutor测试测试ScheduledThreadPoolExecutor正在关闭线程池...测试测试ScheduledThreadPoolExecutor正在等待线程池中的任务执行完成所有线程执行结束,线程池关闭

       æ³¨æ„ï¼šå…³äºŽTimer和ScheduledThreadPoolExecutor还有其他的使用方法,这里,我就简单列出以上两个使用示例,更多的使用方法大家可以自行实现。

       æœ¬æ–‡åˆ†äº«è‡ªåŽä¸ºäº‘社区《【高并发】ScheduledThreadPoolExecutor与Timer的区别和简单示例》,作者:冰河。

java线程池(一):java线程池基本使用及Executors

       @[toc] 在前面学习线程组的时候就提到过线程池。实际上线程组在我们的解读日常工作中已经不太会用到,但是源码线程池恰恰相反,是解读我们日常工作中必不可少的工具之一。现在开始对线程池的源码使用,以及底层ThreadPoolExecutor的解读因酷源码 下载源码进行分析。

1.为什么需要线程池

       我们在前面对线程基础以及线程的源码生命周期有过详细介绍。一个基本的解读常识就是,线程是源码一个特殊的对象,其底层是解读依赖于JVM的native方法,在jvm虚拟机内部实现的源码。线程与普通对象不一样的解读地方在于,除了需要在堆上分配对象之外,源码还需要给每个线程分配一个线程栈、解读以及本地方法栈、源码程序计数器等线程的私有空间。线程的初始化工作相对于线程执行的大多数任务而言,都是一个耗时比较长的工作。这与数据库使用一样。有时候我们连接数据库,仅仅只是为了执行一条很小的sql语句。但是在我们日常的开发工作中,我们的绝大部分工作内容,都会分解为一个个短小的执行任务来执行。这样才能更加合理的复用资源。这种思想就与我们之前提到的协程一样。任务要尽可能的小。但是在java中,任务不可能像协程那样拆分得那么细。那么试想,如果说,有一个已经初始化好的小鱼项目网源码很多线程,在随时待命,那么当我们有任务提交的时候,这些线程就可以立即工作,无缝接管我们的任务请求。那么效率就会大大增加。这些个线程可以处理任何任务。这样一来我们就把实际的任务与线程本身进行了解耦。从而将这些线程实现了复用。 这种复用的一次创建,可以重复使用的池化的线程对象就被成为线程池。 在线程池中,我们的线程是可以复用的,不用每次都创建一个新的线程。减少了创建和销毁线程的时间开销。 同时,线程池还具有队列缓冲策略,拒绝机制和动态线程管理。可以实现线程环境的隔离。当一个线程有问题的时候,也不会对其他的线程造成影响。 以上就是我们使用线程池的原因。一句话来概括就是资源复用,降低开销。

2.java中线程池的实现

       在java中,线程池的主要接口是Executor和ExecutorService在这两个接口中分别对线程池的行为进行了约束,最主要的是在ExecutorService。之后,线程池的实际实现类是AbstractExecutorService类。这个类有三个主要的实现类,ThreadpoolExecutorService、ForkJoinPool以及DelegatedExecutorService。暗影最新软件源码

       后面我们将对这三种最主要的实现类的源码以及实现机制进行分析。

3.创建线程的工厂方法Executors

       在java中, 已经给我们提供了创建线程池的工厂方法类Executors。通过这个类以静态方法的模式可以为我们创建大多数线程池。Executors提供了5种创建线程池的方式,我们先来看看这个类提供的工厂方法。

3.1 newFixedThreadPool/** * Creates a thread pool that reuses a fixed number of threads * operating off a shared unbounded queue.At any point, at most * { @code nThreads} threads will be active processing tasks. * If additional tasks are submitted when all threads are active, * they will wait in the queue until a thread is available. * If any thread terminates due to a failure during execution * prior to shutdown, a new one will take its place if needed to * execute subsequent tasks.The threads in the pool will exist * until it is explicitly { @link ExecutorService#shutdown shutdown}. * * @param nThreads the number of threads in the pool * @return the newly created thread pool * @throws IllegalArgumentException if { @code nThreads <= 0} */public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());}

       这个方法能够创建一个固定线程数量的无界队列的线程池。参数nthreads是最多可同时处理的活动的线程数。如果在所有线程都在处理任务的情况下,提交了其他的任务,那么这些任务将处于等待队列中。直到有一个线程可用为止。如果任何线程在关闭之前的执行过程中,由于失败而终止,则需要在执行后续任务的时候,创建一个新的线程来替换。线程池中的所有线程都将一直存在,直到显示的调用了shutdown方法。 上述方法能创建一个固定线程数量的线程池。内部默认的是使用LinkedBlockingQueue。但是需要注意的是,这个LinkedBlockingQueue底层是链表结构,其允许的最大队列长度为Integer.MAX_VALUE。

public LinkedBlockingQueue() { this(Integer.MAX_VALUE);}

       这样在使用的过程中如果我们没有很好的控制,那么就可能导致内存溢出,出现OOM异常。因此这种方式实际上已经不被提倡。我们在使用的过程中应该谨慎使用。 newFixedThreadPool(int nThreads, ThreadFactory threadFactory)方法:

/** * Creates a thread pool that reuses a fixed number of threads * operating off a shared unbounded queue, using the provided * ThreadFactory to create new threads when needed.At any point, * at most { @code nThreads} threads will be active processing * tasks.If additional tasks are submitted when all threads are * active, they will wait in the queue until a thread is * available.If any thread terminates due to a failure during * execution prior to shutdown, a new one will take its place if * needed to execute subsequent tasks.The threads in the pool will * exist until it is explicitly { @link ExecutorService#shutdown * shutdown}. * * @param nThreads the number of threads in the pool * @param threadFactory the factory to use when creating new threads * @return the newly created thread pool * @throws NullPointerException if threadFactory is null * @throws IllegalArgumentException if { @code nThreads <= 0} */public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) { return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>(),threadFactory);}

       这个方法与3.1中newFixedThreadPool(int nThreads)的方法的唯一区别就是,增加了threadFactory参数。在前面方法中,五十狂风源码对于线程的创建是采用的默认实现Executors.defaultThreadFactory()。而在此方法中,可以根据需要自行定制。

3.2 newSingleThreadExecutor/** * Creates an Executor that uses a single worker thread operating * off an unbounded queue. (Note however that if this single * thread terminates due to a failure during execution prior to * shutdown, a new one will take its place if needed to execute * subsequent tasks.)Tasks are guaranteed to execute * sequentially, and no more than one task will be active at any * given time. Unlike the otherwise equivalent * { @code newFixedThreadPool(1)} the returned executor is * guaranteed not to be reconfigurable to use additional threads. * * @return the newly created single-threaded Executor */public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));}

       此方法将会创建指有一个线程和一个无届队列的线程池。需要注意的是,如果这个执行线程在执行过程中由于失败而终止,那么需要在执行后续任务的时候,用一个新的线程来替换。 那么这样一来,上述线程池就能确保任务的顺序性,并且在任何时间都不会有多个线程处于活动状态。与newFixedThreadPool(1)不同的是,使用newSingleThreadExecutor返回的ExecutorService不能被重新分配线程数量。而使用newFixExecutor(1)返回的ExecutorService,其活动的线程的数量可以重新分配。后面专门对这个问题进行详细分析。 newSingleThreadExecutor(ThreadFactory threadFactory) 方法:

/** * Creates an Executor that uses a single worker thread operating * off an unbounded queue, and uses the provided ThreadFactory to * create a new thread when needed. Unlike the otherwise * equivalent { @code newFixedThreadPool(1, threadFactory)} the * returned executor is guaranteed not to be reconfigurable to use * additional threads. * * @param threadFactory the factory to use when creating new * threads * * @return the newly created single-threaded Executor * @throws NullPointerException if threadFactory is null */public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) { return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>(),threadFactory));}

       这个方法与3.3中newSingleThreadExecutor的区别就在于增加了一个threadFactory。可以自定义创建线程的方法。

3.3 newCachedThreadPool/** * Creates a thread pool that creates new threads as needed, but * will reuse previously constructed threads when they are * available.These pools will typically improve the performance * of programs that execute many short-lived asynchronous tasks. * Calls to { @code execute} will reuse previously constructed * threads if available. If no existing thread is available, a new * thread will be created and added to the pool. Threads that have * not been used for sixty seconds are terminated and removed from * the cache. Thus, a pool that remains idle for long enough will * not consume any resources. Note that pools with similar * properties but different details (for example, timeout parameters) * may be created using { @link ThreadPoolExecutor} constructors. * * @return the newly created thread pool */public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE,L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());}

       这个方法用来创建一个线程池,该线程池可以根据需要自动增加线程。以前的线程也可以复用。这个线程池通常可以提高很多执行周期短的异步任务的性能。对于execute将重用以前的构造线程。如果没有可用的线程,就创建一个 新的线程添加到pool中。秒内,如果该线程没有被使用,则该线程将会终止,并从缓存中删除。因此,在足够长的校园圈子源码下载时间内,这个线程池不会消耗任何资源。可以使用ThreadPoolExecutor构造函数创建具有类似属性但是详细信息不同的线程池。 ?需要注意的是,这个方法创建的线程池,虽然队列的长度可控,但是线程的数量的范围是Integer.MAX_VALUE。这样的话,如果使用不当,同样存在OOM的风险。比如说,我们使用的每个任务的耗时比较长,任务的请求又非常快,那么这样势必会造成在单位时间内创建了大量的线程。从而造成内存溢出。 newCachedThreadPool(ThreadFactory threadFactory)方法:

/** * Creates a thread pool that creates new threads as needed, but * will reuse previously constructed threads when they are * available, and uses the provided * ThreadFactory to create new threads when needed. * @param threadFactory the factory to use when creating new threads * @return the newly created thread pool * @throws NullPointerException if threadFactory is null */public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) { return new ThreadPoolExecutor(0, Integer.MAX_VALUE,L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>(),threadFactory);}

       这个方法区别同样也是在于,增加了threadFactory可以自行指定线程的创建方式。

2.4 newScheduledThreadPool/** * Creates a thread pool that can schedule commands to run after a * given delay, or to execute periodically. * @param corePoolSize the number of threads to keep in the pool, * even if they are idle * @return a newly created scheduled thread pool * @throws IllegalArgumentException if { @code corePoolSize < 0} */public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) { return new ScheduledThreadPoolExecutor(corePoolSize);}

       创建一个线程池,该线程池可以将任务在指定的延迟时间之后运行。或者定期运行。这个方法返回的是ScheduledThreadPoolExecutor。这个类是ThreadPoolExecutor的子类。在原有线程池的的基础之上,增加了延迟和定时功能。我们在后面分析了ThreadPoolExecutor源码之后,再来分析这个类的源码。 与之类似的方法:

/** * Creates a thread pool that can schedule commands to run after a * given delay, or to execute periodically. * @param corePoolSize the number of threads to keep in the pool, * even if they are idle * @param threadFactory the factory to use when the executor * creates a new thread * @return a newly created scheduled thread pool * @throws IllegalArgumentException if { @code corePoolSize < 0} * @throws NullPointerException if threadFactory is null */public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize, ThreadFactory threadFactory) { return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);}

       通过这个方法,我们可以指定threadFactory。自定义线程创建的方式。 同样,我们还可以只指定一个线程:

public static ScheduledExecutorService newSingleThreadScheduledExecutor() { return new DelegatedScheduledExecutorService(new ScheduledThreadPoolExecutor(1));}public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) { return new DelegatedScheduledExecutorService(new ScheduledThreadPoolExecutor(1, threadFactory));}

       上述两个方法都可以实现这个功能,但是需要注意的是,这两个方法的返回在外层包裹了一个包装类。

3.5 newWorkStealingPool

       这种方式是在jdk1.8之后新增的。我们先来看看其源码:

public LinkedBlockingQueue() { this(Integer.MAX_VALUE);}0

       这个方法实际上返回的是ForkJoinPool。该方法创建了一

硬核干货:4W字从源码上分析JUC线程池ThreadPoolExecutor的实现原理

       深入剖析JUC线程池ThreadPoolExecutor的执行核心

       早有计划详尽解读ThreadPoolExecutor的源码,因事务繁忙未能及时整理。在之前的文章中,我们曾提及Doug Lea设计的Executor接口,其顶层方法execute()是线程池扩展的基础。本文将重点关注ThreadPoolExecutor#execute()的实现,结合简化示例,逐步解析。

       ThreadPoolExecutor的核心功能包括固定的核心线程、额外的非核心线程、任务队列和拒绝策略。它的设计巧妙地运用了JUC同步器框架AbstractQueuedSynchronizer(AQS),以及位操作和CAS技术。以核心线程为例,设计上允许它们在任务队列满时阻塞,或者在超时后轮询,而非核心线程则在必要时创建。

       创建ThreadPoolExecutor时,我们需要指定核心线程数、最大线程数、任务队列类型等。当核心线程和任务队列满载时,会尝试添加额外线程处理新任务。线程池的状态控制至关重要,通过整型变量ctl进行管理和状态转换,如RUNNING、SHUTDOWN、STOP等,状态控制机制包括工作线程上限数量的位操作。

       接下来,我们深入剖析execute()方法。首先,方法会检查线程池状态和工作线程数量,确保在需要时添加新线程。这里涉及一个疑惑:为何需要二次检查?这主要是为了处理任务队列变化和线程池状态切换。任务提交流程中,addWorker()方法负责创建工作线程,其内部逻辑复杂,包含线程中断和适配器Worker的创建。

       Worker内部类是线程池核心,它继承自AQS,实现Runnable接口。Worker的构造和run()方法共同确保任务的执行,同时处理线程中断和生命周期的终结。getTask()方法是工作线程获取任务的关键,它会检查任务队列状态和线程池大小,确保资源的有效利用。

       线程池关闭操作通过shutdown()、shutdownNow()和awaitTermination()方法实现,它们涉及线程中断、任务队列清理和状态更新等步骤,以确保线程池的有序退出。在这些方法中,可重入锁mainLock和条件变量termination起到了关键作用,保证了线程安全。

       ThreadPoolExecutor还提供了钩子方法,允许开发者在特定时刻执行自定义操作。除此之外,它还包含了监控统计、任务队列操作等实用功能,每个功能的实现都是对execute()核心逻辑的扩展和优化。

       总的来说,ThreadPoolExecutor的execute()方法是整个线程池的核心,它的实现原理复杂而精细。后续将陆续分析ExecutorService和ScheduledThreadPoolExecutor的源码,深入探讨线程池的扩展和调度机制。敬请关注,期待下文的详细解析。

Java原理系列ScheduledThreadPoolExecutor原理用法示例源码详解

       ScheduledThreadPoolExecutor是Java中实现定时任务与周期性执行任务的高效工具。它继承自ThreadPoolExecutor类,能够提供比常规Timer类更强大的灵活性与功能,特别是在需要多个工作线程或有特殊调度需求的场景下。

       该类主要功能包含但不限于提交在指定延迟后执行的任务,以及按照固定间隔周期执行的任务。它实现了ScheduledExecutorService接口,进而提供了丰富的API以实现任务的调度与管理。其中包括now()、getDelay()、compareTo()等方法,帮助开发者更精确地处理任务调度与延迟。

       在实际应用中,ScheduledThreadPoolExecutor的使用案例广泛。比如,初始化一个ScheduledThreadPoolExecutor实例,设置核心线程数,从而为定时任务提供资源保障。提交延迟任务,例如在5秒后执行特定操作,并输出相关信息。此外,提交周期性任务,如每隔2秒执行一次特定操作,用于实时监控或数据更新。最后,通过调用shutdown()与shutdownNow()方法来关闭执行器并等待所有任务完成,确保系统资源的合理释放与任务的有序结束。

       总的来说,ScheduledThreadPoolExecutor在处理需要精确时间控制的任务时展现出了强大的功能与灵活性,是Java开发者在实现定时与周期性任务时的首选工具。

ThreadPoolExecutor简介&源码解析

       线程池是通过池化管理线程的高效工具,尤其在多核CPU时代,利用线程池进行并行处理任务有助于提升服务器性能。ThreadPoolExecutor是线程池的具体实现,它负责线程管理和任务管理,以及处理任务拒绝策略。这个类提供了多种功能,如通过Executors工厂方法配置,执行Runnable和Callable任务,维护任务队列,统计任务完成情况等。

       创建线程池需要考虑关键参数,如核心线程数(任务开始执行时立即创建),最大线程数(任务过多时限制新线程生成),线程存活时间,任务队列大小,线程工厂以及拒绝策略。JDK提供了四种拒绝策略,如默认的AbortPolicy,当资源饱和时抛出异常。此外,线程池还提供了beforeExecute和afterExecute钩子函数,用于在任务执行前后执行自定义操作。

       当任务提交到线程池时,会经历一系列处理流程,包括任务的执行和线程池状态的管理。例如,如果任务队列和线程池满,会根据拒绝策略处理新任务。使用线程池时,需注意线程池容量与状态的计算,以及线程池工作线程的动态调整。

       示例中,自定义线程池并重写钩子函数,创建任务后向线程池提交,可以看到线程池如何根据配置动态调整资源。但要注意,如果任务过多且无法处理,可能会抛出异常。源码分析中,submit方法实际上是调用execute,而execute内部包含Worker类和runWorker方法的逻辑,包括任务的获取和执行。

       线程池的容量上限并非Integer.MAX_VALUE,而是由ctl变量的低位决定。 Doug Lea的工具函数简化了ctl的操作,使得计算线程池状态和工作线程数更加便捷。通过深入了解ThreadPoolExecutor,开发者可以更有效地利用线程池提高应用性能。

本文地址:http://04.net.cn/news/64c398595950.html 欢迎转发