1.�ż���githubԴ��
2.å¦ä½ç³»ç»å°èªå¦ Python
3.五穷六绝七翻身?量化分析揭开背后真相(附源码)
4.aiç»å¾è½¯ä»¶
�ż���githubԴ��
深圳市九山科技,价抢价抢一家以Anki源码为基础,源码进行二次开发的购脚公司,推出了名为Anki记忆卡的价抢价抢产品。这款产品包含了Android版、源码iOS版、购脚inder源码分析网页版以及正在开发的价抢价抢MAC版。
最早,源码该公司推出了探索版,购脚仅调整了服务器配置,价抢价抢并提供了一个网址(),源码用户可以在网站上发布付费卡组。购脚网站对每笔交易收取7%的价抢价抢平台费用,最低售价0.1元。源码网站上也提供免费卡组,购脚但用户需使用开发的Anki记忆卡导入。
以下为Anki官方相关链接:
桌面客户端GitHub:github.com/ankitects/an...
Android客户端GitHub:github.com/ankidroid/An...
iOS客户端:apps.apple.com/us/app/a...
国内爱好者创建的Anki中网,作为官方中文教程的跳转站,提供Anki官方各版本下载链接(e back at St.Leger's Day”,St.Leger's Day指的就是英国每年九月份在南约克郡举行的秋季赛马比赛。所以整句话翻译过来就是说,在五月份的时候大家都要卖出清仓离开,等到秋季赛马比赛后再回来。虚拟物品分销源码
为啥要在五月份离开呢?因为夏天到了太热了,离开伦敦去避暑,就跟清朝皇帝一到夏天就跑到承德避暑山庄消夏一样,等到秋天转凉了再屁颠屁颠跑回来。所以嘛,那群英国贵族、银行家和投资家都跑出去避暑了,清仓不玩了,那时候还没现在远程炒股的便利,股市可不就冷清没有行情嘛,等到他们九月末回来之后,行情才会有起色。后来这句话被投资者们念叨着跨过大西洋,带到了北美大陆,成为了如今华尔街金融人士口口相传的一句谚语。
同样都是五月卖出/下跌,一个来自于香港,一个来自于英美,那跟我国的大A行情规律吻合吗?今年大盘五月份跌了3.%,六月份跌了0.%,真的是又穷又绝,接下来的分治法程序源码一个月我们能翻身不?
要看我国股市符不符合“五穷六绝七翻身”这个规律,靠瞎说可不行,要有数据统计结果,邓爷爷教育道“实践是检验真理的唯一标准”,我们就撸起袖子开干。
要总结规律,那数据时间范围当然越长越好,挑来挑去,觉得还是先选择“上证指数”较为合适,它在年就发布了(沪深指数还要年后才发布),基本跟上交所深交所同龄,数据长度够长,基本全覆盖了A股发展历程,更何况股民日常说的点、点什么的,指的就是上证指数的点位。
首先我们就来获取上证指数的历史行情数据,这里使用的是股票量化开源库qstock,直接使用“pip install qstock”就可以安装,基本的功能无需注册便可以使用,对新手来说非常方便,详情请见:github.com/tkfy/qsto...
在这里我们就获取了上证指数从年6月至年6月的全部月度行情数据,结合当月的汽车租赁管理源码收盘价和上个月的收盘价(close)就可以计算出当月的涨跌幅(pct),为了方便后续统计,我们还需要将日期索引(date,对应的是每个月的最后交易日)转换为对应的月份数值(month)。
至此,我们就获取到了年7月至年6月这年之间每个月的涨跌幅数据,这样的日期范围设置的原因是,平衡每个月份数的分布,保证每个月都出现的次数相同,都是次。
数据整理完毕后,就可以开始统计了,在这里我们要统计的是每个月的上涨次数(win_num)、下跌次数(lose_num)、胜率(win_rate)、涨跌幅的均值(pct_avg)、涨跌幅的中位数(pct_med)、涨跌幅的最小值(pct_min)和涨跌幅的最大值(pct_max)。
实现的原理是,按月份数值(month)进行循环,分月份进行统计,那每一个月份就有个涨跌幅(pct)数值,若涨跌幅为正数记为上涨,森林舞会源码安装负数记为下跌,胜率(单位百分比)则为“*上涨次数/”,其余的4个指标就分别对应着这个涨跌幅数值序列当中的均值、中位数、最小值和最大值,具体细节请看下方代码。
现在统计结果就一目了然了,五月份和六月份的胜率都是五五开,年里面涨跌都是各有次,而七月份上涨次数只有次,再看涨跌幅均值,这3个月份的涨跌幅均值分别为5.%、-0.%和-0.%,而且七月份的涨跌幅均值是一年个月里面最差的,涨跌幅中位数也是。
因此结果显而易见,无论从胜率,还是涨跌幅均值/中位数,七月份都要比五月份和六月份的差,如果还要坚持说五六月份还是“五穷六绝”的话,那整句话就该改为“五穷六绝七地狱”,地狱还可能是十八层的那种。
为了降低选择代表性指数时的片面性,我们把市场上主流的那几个指数都逐个统计一遍,只要把第一段代码中的变量symbol再分别逐次修改为深证成指、上证、沪深、中证、中证、创业板指和中证全指,时间范围也做对应的调整,挨个重新run一遍,就可以统计出相应指数的月份涨跌幅数据,每次的统计结果都会保存为以指数名称为文件名后缀的Excel文件,汇总这些统计文件,就可以看到所有指数的全貌,统计结果如下所示。
主流指数所有月份胜率数据表:
主流指数所有月份涨跌幅均值数据表:
从胜率表当中看出,五六七月份的总体胜率均值分别是.2%、.%和.%,七月份并没有好于五六月份;五六七月份的总体涨跌幅均值分别是2.%、-0.%和1.%,虽然七月份翻身了一丢丢,但也没有体现出“五穷”的赶脚,综上所述,至少在主流指数概况当中,“五穷六绝七翻身”这种说法并不成立,根本站不住脚,今年的七月翻身仗,翻不翻得了基本是五五开,但从总体涨跌幅均值来看,还是“优势在我”。
论证已经完毕了,但是在过程当中还有两个有趣的发现,也可以顺便说一下,眼尖的小伙伴可能已经发现了。
第一个就是存在着“五穷六绝七翻身”的指数,它就是上证指数,它五六七月份的胜率分别是%、%和.%,涨跌幅均值是-0.%、-1.和1.%,这样一看,是不是完美契合这句谚语了。
其实吧,只要你把各种市场指数、行业指数、风格指数、概念指数和板块指数统统都统计一遍,肯定能找出不少符合这种规律的指数,只不过占比不高,并不是主流,只要林子足够大,什么鸟儿都会有。
第二个发现其实我已经在上面的表格当中标注出来了,那就是在所有月份当中,二月份的胜率和涨跌幅均值出奇的高,如果还没有感觉的话,我们把它转化为柱状图展示就直观了。
特别是看二月份的涨跌幅均值,简直就是谷子地里窜高粱——硬生生高出一大截来,并且没有一个指数的二月份涨跌幅均值出现负数,二月份的胜率均值接近%,也是没有一个指数的二月份胜率是低于%的。
如果拿枪指着我的脑袋,让我硬是选一个月份翻身,我会毫不犹豫选择二月份,谁会跟概率过不去嘛。
其实上面的这些统计研究,在量化交易或金融工程里面有一个确切的术语,叫做“日历效应”,也就是研究那些与日期存在关联的非正常收益和非正常波动的数据特征现象。
如果大家对我国股市的日历效应感兴趣,特别是想了解清楚本次统计中二月份的胜率和收益为什么这么高,背后的金融逻辑是什么,推荐大家去看国海金工今年新出的深度金工研报《日历效应背后的择时策略探究》,在里面作者列举和解释了A股中各种各样与日期节假日相关的Alpha场景,并利用其中的原理构建指数择时和行业轮动策略。
这次就先聊到这儿,噢~对了,差点忘记说,找研报不方便的小伙伴,可在公众号“量化君也”后台回复暗号“日历效应”,就可以直接保存和下载上面那篇研报,如果对你有帮助的话,可以点个充满鼓励的“赞”告诉我,让我动力满满继续肝~
我是 @quantkoala,一枚大写的量化/程序化策略源码捕手,喜欢全方位收集分享市面上主流的策略源码(股票+期货+外汇),在“量化藏经阁”和“量化藏经阁Max”社群(入口)中,持续分享量化策略源码和量化知识等干货(目前已分享+套精品策略),欢迎关注点赞&联系沟通,探讨共赢&成果共享,相互交流&共同进步!!!常在线,多交流,多沟通!!!更多相关资料请见下方文章卡片,另外还有一个持续更新的公众号“量化君也”,专注于量化策略分享/交流/社群,欢迎来玩~
aiç»å¾è½¯ä»¶
aiç»å¾è½¯ä»¶ï¼ä¸ã梦幻AIç»å®¶
梦幻AIç»å®¶æ¯ä¸æ¬¾ä¸ä¸çAIä½å¾å·¥å ·ï¼æä½å¾æ¹ä¾¿ï¼èä¸æ¶µçè¶ çº§å¤ç»ç»ç±»åï¼æ 论æ¨æ¯å欢åå®é£ãäºæ¬¡å ãç»å ¸èºæ¯é£æ ¼è¿æ¯èµåæå 大çæï¼ééé½è½å¤ä¸ºæ¨åç°åºæ¥ï¼å¯ä»¥éå¿åæ¢ã
ä¸è½½å®è£ åï¼æå¼è¯¥åºç¨ï¼ç¹å»è¿å ¥ï¼åªéè¦è¾å ¥æåå 容ï¼å½¢å®¹æ¨éè¦è½¬æ¢çç»é¢ï¼åéæ©èºæ¯é£æ ¼ï¼å°±å¯ä»¥ä¸é®è½¬æ¢äºãæä½æ¥éª¤å°±æ¯è¿ä¹ç®åï¼èä¸å¦æå½æ¨è¿æ²¡ææ³æ³çæ¶åï¼ä¹å¯ä»¥å°è¯éæºå ³é®è¯çæç»ç»ä½åï¼è¯´ä¸å®ä¹ä¼ææå¤çæ¶è·å¦ï¼å欢就å¯ä»¥ä¸é®å¯¼åºä¿åã
äºãæé´AIç»ç»
æé´AIç»ç»æ¨å¨ä¸ºæ¨å¸¦æ¥ä¾¿æ·çAIç»ç»æå¡ï¼è¿æ¬¾åºç¨æ们æå¼åï¼å¯ä»¥æ¥çå°å¤ç§ç¾æ¯ä½ç»é£æ ¼ï¼éæ©æ¨å欢çé£æ ¼ï¼ç¹å»âå¼å§ç»å¶âï¼æ¨å¯ä»¥éè¿è¾å ¥æåæè å¯¼å ¥å¾ççæ¹å¼çææ°ç»ä½ï¼å¯ä»¥åå¤å¤æ¬¡çæï¼æ¯æ¬¡çæçç»é¢é½æ¯ä¸ä¸æ ·çãå¨âæçâ页é¢ä¸è¿å¯ä»¥æ¥ççæåå²è®°å½ã
ä¸ãç±æAiç»ç»
ç±æAiç»ç»è½å¤ä¸ºæ¨å¸¦æ¥ä¾¿æ·çä½ç»ä½éªï¼æ éå ·æç»ç»åºç¡ï¼æ é¨æ§ä½ç»ï¼è®©æ¨å°æ¢¦å¢åä¸ºå ·è±¡åç°å®ç»é¢ï¼åªéè¦ç¨å ³é®è¯æè¿°éè¦çç»é¢ï¼åéæ©å欢çèºæ¯é£æ ¼ã
è¿ä¸ªåºç¨ä¸çç»é£å¤§å¤åå¯ç¾ï¼çæç»ä½ç¬ä¸æ äºï¼æ°¸ä¸éå¤ï¼å½ç¶æ¨ä¹ä¸ç¨æ å¿ä¼ä¸¢å¤±ä¹åçæçæ°æ®ï¼çæè®°å½å¯ä»¥éæ¶æ¥çï¼ææ³è¦ä¿åçå¾åæè§å¯¼åºä¿åå³å¯ã
åãDisco Diffusion
è¿æ¯ä¸æ¬¾æ¯è¾æ©çå è´¹å¼æºAIç»å¾å·¥å ·ï¼å¯¹çµè设å¤æ²¡æè¦æ±ï¼æ¥ææ¯è¾å ¨é¢çèµæºåå·¥å ·ï¼åªè¦éè¿æååè¿°ç»é¢ï¼å¹¶è®¾ç½®å¥½ç¸åºåæ°å°±è½è®©AI为æ¨ç»å¶åºç¸åºçå¾çï¼æ¤å¤ç±äºè½¯ä»¶éµå¾ªMITå¼æºåè®®ï¼æä»¥ä½ å¯ä»¥å¯¹å 容è¿è¡å®ç¨ãå¤å¶ä»¥ååºå®çæä½ã
äºãNovelai
è¿æ¯ä¸æ¬¾ä¸æ³¨äºäºæ¬¡å é¢åçAIç»å¾å·¥å ·ï¼å¤§å®¶ç®åå¨å大社交平å°ä¸çå°çAIç¾å¾é½æ¯è¿æ¬¾è½¯ä»¶çåå³ï¼åªè¦è¾å ¥å¥½ç¸åºçæ ç¾è¿å»ï¼éå¾ ä¾¿å¯å³å¯è·ååä½ã
èå¨å®é 使ç¨è¿ç¨ä¸åç°ï¼è¿æ¬¾è½¯ä»¶é¤äºäºæ¬¡å é¢åå¤ï¼åå®æ¿ååå®é£æ ¼ä¹æ¯ç¸å½çä¸éï¼ä½è¿æ¬¾è½¯ä»¶å¨èº«ä½å±±å¤çä¸å¾ä¸å°½äººæï¼æ³âè¿ä½äººâä¹ç±»çå¾çï¼ä¹å¤åºèªæ¤ç«ä¹æã
2025-01-24 10:30
2025-01-24 10:09
2025-01-24 10:07
2025-01-24 10:00
2025-01-24 09:51
2025-01-24 09:37
2025-01-24 09:05
2025-01-24 09:01