【spark源码剖析pdf】【微信小程序3d展览馆源码】【宝马x5车辆溯源码查不到】四棵树源码_四棵树logo

2024-12-24 20:56:47 来源:安卓软件源码下载 分类:娱乐

1.死磕以太坊源码分析之Kademlia算法
2.到底什么是棵树棵树哈夫曼树啊,求例子
3.AST详解与运用
4.有人可以帮我注释一段关于用c语言实现哈夫曼树的源码代码吗?

四棵树源码_四棵树logo

死磕以太坊源码分析之Kademlia算法

       Kademlia算法是一种点对点分布式哈希表(DHT),它在复杂环境中保持一致性和高效性。棵树棵树该算法基于异或指标构建拓扑结构,源码简化了路由过程并确保了信息的棵树棵树有效传递。通过并发的源码spark源码剖析pdf异步查询,系统能适应节点故障,棵树棵树而不会导致用户等待过长。源码

       在Kad网络中,棵树棵树每个节点被视作一棵二叉树的源码叶子,其位置由ID值的棵树棵树最短前缀唯一确定。节点能够通过将整棵树分割为连续、源码不包含自身的棵树棵树子树来找到其他节点。例如,源码节点可以将树分解为以0、棵树棵树、、为前缀的子树。节点通过连续查询和学习,逐步接近目标节点,最终实现定位。每个节点都需知道其各子树至少一个节点,这有助于通过ID值找到任意节点。

       判断节点间距离基于异或操作。例如,节点与节点的距离为,高位差异对结果影响更大。微信小程序3d展览馆源码异或操作的单向性确保了查询路径的稳定性,不同起始节点进行查询后会逐步收敛至同一路径,减轻热门节点的存储压力,加快查询速度。

       Kad路由表通过K桶构建,每个节点保存距离特定范围内的节点信息。K桶根据ID值的前缀划分距离范围,每个桶内信息按最近至最远的顺序排列。K桶大小有限,确保网络负载平衡。当节点收到PRC消息时,会更新相应的K桶,保持网络稳定性和减少维护成本。K桶老化机制通过随机选择节点执行RPC_PING操作,避免网络流量瓶颈。

       Kademlia协议包括PING、STORE、FIND_NODE、FIND_VALUE四种远程操作。这些操作通过K桶获得节点信息,并根据信息数量返回K个节点。系统存储数据以键值对形式,BitTorrent中key值为info_hash,value值与文件紧密相关。RPC操作中,接收者响应随机ID值以防止地址伪造,宝马x5车辆溯源码查不到并在回复中包含PING操作校验发送者状态。

       Kad提供快速节点查找机制,通过参数调节查找速度。节点x查找ID值为t的节点,递归查询最近的节点,直至t或查询失败。递归过程保证了收敛速度为O(logN),N为网络节点总数。查找键值对时,选择最近节点执行FIND_VALUE操作,缓存数据以提高下次查询速度。

       数据存储过程涉及节点间数据复制和更新,确保一致性。加入Kad网络的节点通过与现有节点联系,并执行FIND_NODE操作更新路由表。节点离开时,系统自动更新数据,无需发布信息。Kad协议设计用于适应节点失效,周期性更新数据到最近邻居,确保数据及时刷新。

到底什么是哈夫曼树啊,求例子

       哈夫曼树是给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的连板百分百涨停副图源码二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

       例子:

       1、将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);

       2、 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;

       3、从森林中删除选取的两棵树,并将新树加入森林;

       4、重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。

扩展资料:

       按照哈夫曼编码构思程序流程:

       1、切割的顺序是从上往下,直至数组中的元素全部出现在叶节点;

       2、我们思路正好相反,从数组中找出最小的两个元素作为最下面的叶节点,在向备选数组中存入这两个叶节点的和(这个新的和加入累加运算,这个和也就是笔记本贴膜印刷机型号源码所求的最小值的一部分,原因如上图)。

       3、以本题为例,备选数组中现有元素为{ ,},再次取出两个最小元素进行求和,得到新的元素,回归备选数组并记入累加。

       4、上述2.3布重复执行直至备选数组中只有一个元素,此时累加结束,返回累加值即可

       5、求数组中的最小值,可以用小根堆进行提取最为方便;此题用到了贪心的思路,即用相同的策略重复执行,直至我们得到所需的结果。

       参考资料来源:百度百科——哈夫曼树

AST详解与运用

       了解AST之前,我们先来简单陈述一下JavaScript引擎的工作原理:从上图中我们可以看到,JavaScript引擎做的第一件事情就是把JavaScript代码编译成抽象语法树,于是就有了本文对AST抽象语法树的浅析.

       我们都知道,在传统的编译语言的流程中,程序的一段源代码在执行之前会经历三个步骤,统称为"编译":抽象语法树(abstract syntax code,AST)是源代码的抽象语法结构的树状表示,树上的每个节点都表示源代码中的一种结构,之所以说是抽象的,是因为抽象表示把js代码进行了结构化的转化,转化为一种数据结构。这种数据结构其实就是一个大的json对象,json我们都熟悉,他就像一颗枝繁叶茂的树。有树根,有树干,有树枝,有树叶,无论多小多大,都是一棵完整的树。

       简单理解,就是把我们写的代码按照一定的规则转换成一种树形结构。

       AST的作用不仅仅是用来在JavaScript引擎的编译上,我们在实际的开发过程中也是经常使用的,比如我们常用的babel插件将 ES6转化成ES5、使用 UglifyJS来压缩代码 、css预处理器、开发WebPack插件、Vue-cli前端自动化工具等等,这些底层原理都是基于AST来实现的,AST能力十分强大, 能够帮助开发者理解JavaScript这门语言的精髓。

       我们先来看一组简单的AST树状结构:

       经过转化,输出如下AST树状结构:

       我们可以看到,一个标准的AST结构可以理解为一个json对象,那我们就可以通过一些方法去解析和操作它,这里我们先提供一个在线检测工具,大家可以自行去体验: esprima.org/demo/parse...

       AST编译流程图:

       我们可以看到,AST工具会源代码经过四个阶段的转换:

       词法分析scanner

       parser生成AST树

       traverse对AST树遍历,进行增删改查

       generator将更新后的AST转化成代码

       Babel插件就是作用于抽象语法树。

       Babel 的三个主要处理步骤分别是: 解析(parse),转换(transform),生成(generate)。

       vue中AST主要运用在模板编译过程.

       vue中的模板编译主要分为三个步骤:

       解析器要实现的功能就是将模板解析成AST,我们这里主要来分析一下代码解析阶段,这里主要运用的是parse()这个函数,事实上,解析器内部也分为好几个解析器,比如HTML解析器、文本解析器以及过滤解析器,其中最主要的就是HTML解析器。HTML解析器的作用就是解析HTML,它在解析HTML的过程中会不断触发各种钩子函数,我们来看看代码实现:

       举个例子:

       当上面这个模板被HTML解析器解析时,所触发的钩子函数依次是:start、chars、end。

       所以HTML解析器在实现上是一个函数,它有两个参数----模板和选项,我们的模板是一小段一小段去截取与解析的,所以需要不断循环截取,我们来看看vue内部实现原理:

       以上就是vue解析器生成AST语法树的主流程了,代码细节的地方还需要自己去解读源码,源码位置:\vue\packages\weex-template-compiler\build.js

       AST抽象语法树的知识点作为JavaScript中(任何编程语言中都有ast这个概念,这里就不过多赘述)相对基础的,也是最不可忽略的知识,带给我们的启发是无限可能的,它就像一把螺丝刀,能够拆解javascript这台庞大的机器,让我们能够看到一些本质的东西,同时也能通过它批量构建任何javascript代码。

       小时候梦想改变世界,如今我们可以用自己写的程序,构建出我们所生活的网络世界,丰富多姿。

       借用一句歌词: 我还是从前那个少年,没有一丝丝改变。时间只不过是考验,种在心中信念丝毫未减 。希望大家能够在软件开发的路途上坚定信念,越走越远.....

有人可以帮我注释一段关于用c语言实现哈夫曼树的代码吗?

       在一般的数据结构的书中,树的那章后面,著者一般都会介绍一下哈夫曼(HUFFMAN)树和哈夫曼编码。哈夫曼编码是哈夫曼树的一个应用。哈夫曼编码应用广泛,如

       JPEG中就应用了哈夫曼编码。 首先介绍什么是哈夫曼树。哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点

       的权值乘上其到根结点的 路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。

       树的带权路径长度记为WPL=(W1*L1+W2*L2+W3*L3+...+Wn*Ln)  ,N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。 可以证明哈夫曼树的WPL是最小的。

       哈夫曼编码步骤:

       一、对给定的n个权值{ W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F= { T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。(为方便在计算机上实现算 法,一般还要求以Ti的权值Wi的升序排列。)

       二、在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。

       三、从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。

       四、重复二和三两步,直到集合F中只有一棵二叉树为止。

       简易的理解就是,假如我有A,B,C,D,E五个字符,出现的频率(即权值)分别为5,4,3,2,1,那么我们第一步先取两个最小权值作为左右子树构造一个新树,即取1,2构成新树,其结点为1+2=3,如图:

       请点击输入描述

       虚线为新生成的结点,第二步再把新生成的权值为3的结点放到剩下的集合中,所以集合变成{ 5,4,3,3},再根据第二步,取最小的两个权值构成新树,如图:

       请点击输入描述

       再依次建立哈夫曼树,如下图:

       请点击输入描述

       其中各个权值替换对应的字符即为下图:

       请点击输入描述

       所以各字符对应的编码为:A->,B->,C->,D->,E->

       霍夫曼编码是一种无前缀编码。解码时不会混淆。其主要应用在数据压缩,加密解密等场合。

       C语言代码实现:

       /*-------------------------------------------------------------------------

       * Name:   哈夫曼编码源代码。

       * Date:   ..

       * Author: Jeffrey Hill+Jezze(解码部分)

       * 在 Win-TC 下测试通过

       * 实现过程:着先通过 HuffmanTree() 函数构造哈夫曼树,然后在主函数 main()中

       *           自底向上开始(也就是从数组序号为零的结点开始)向上层层判断,若在

       *           父结点左侧,则置码为 0,若在右侧,则置码为 1。最后输出生成的编码。

       *------------------------------------------------------------------------*/

       #include <stdio.h>

       #include<stdlib.h>

       #define MAXBIT      

       #define MAXVALUE  

       #define MAXLEAF    

       #define MAXNODE    MAXLEAF*2 -1

       typedef struct

       {

       int bit[MAXBIT];

       int start;

       } HCodeType;        /* 编码结构体 */

       typedef struct

       {

       int weight;

       int parent;

       int lchild;

       int rchild;

       int value;

       } HNodeType;        /* 结点结构体 */

       /* 构造一颗哈夫曼树 */

       void HuffmanTree (HNodeType HuffNode[MAXNODE],  int n)

       {

       /* i、j: 循环变量,m1、m2:构造哈夫曼树不同过程中两个最小权值结点的权值,

       x1、x2:构造哈夫曼树不同过程中两个最小权值结点在数组中的序号。*/

       int i, j, m1, m2, x1, x2;

       /* 初始化存放哈夫曼树数组 HuffNode[] 中的结点 */

       for (i=0; i<2*n-1; i++)

       {

       HuffNode[i].weight = 0;//权值

       HuffNode[i].parent =-1;

       HuffNode[i].lchild =-1;

       HuffNode[i].rchild =-1;

       HuffNode[i].value=i; //实际值,可根据情况替换为字母

       } /* end for */

       /* 输入 n 个叶子结点的权值 */

       for (i=0; i<n; i++)

       {

       printf ("Please input weight of leaf node %d: \n", i);

       scanf ("%d", &HuffNode[i].weight);

       } /* end for */

       /* 循环构造 Huffman 树 */

       for (i=0; i<n-1; i++)

       {

       m1=m2=MAXVALUE;     /* m1、m2中存放两个无父结点且结点权值最小的两个结点 */

       x1=x2=0;

       /* 找出所有结点中权值最小、无父结点的两个结点,并合并之为一颗二叉树 */

       for (j=0; j<n+i; j++)

       {

       if (HuffNode[j].weight < m1 && HuffNode[j].parent==-1)

       {

       m2=m1;

       x2=x1;

       m1=HuffNode[j].weight;

       x1=j;

       }

       else if (HuffNode[j].weight < m2 && HuffNode[j].parent==-1)

       {

       m2=HuffNode[j].weight;

       x2=j;

       }

       } /* end for */

       /* 设置找到的两个子结点 x1、x2 的父结点信息 */

       HuffNode[x1].parent  = n+i;

       HuffNode[x2].parent  = n+i;

       HuffNode[n+i].weight = HuffNode[x1].weight + HuffNode[x2].weight;

       HuffNode[n+i].lchild = x1;

       HuffNode[n+i].rchild = x2;

       printf ("x1.weight and x2.weight in round %d: %d, %d\n", i+1, HuffNode[x1].weight, HuffNode[x2].weight);  /* 用于测试 */

       printf ("\n");

       } /* end for */

       /*  for(i=0;i<n+2;i++)

       {

       printf(" Parents:%d,lchild:%d,rchild:%d,value:%d,weight:%d\n",HuffNode[i].parent,HuffNode[i].lchild,HuffNode[i].rchild,HuffNode[i].value,HuffNode[i].weight);

       }*///测试

       } /* end HuffmanTree */

       //解码

       void decodeing(char string[],HNodeType Buf[],int Num)

       {

       int i,tmp=0,code[];

       int m=2*Num-1;

       char *nump;

       char num[];

       for(i=0;i<strlen(string);i++)

       {

       if(string[i]=='0')

       num[i]=0;

       else

       num[i]=1;

       }

       i=0;

       nump=&num[0];

       while(nump<(&num[strlen(string)]))

       { tmp=m-1;

       while((Buf[tmp].lchild!=-1)&&(Buf[tmp].rchild!=-1))

       {

       if(*nump==0)

       {

       tmp=Buf[tmp].lchild ;

       }

       else tmp=Buf[tmp].rchild;

       nump++;

       }

       printf("%d",Buf[tmp].value);

       }

       }

       int main(void)

       {

       HNodeType HuffNode[MAXNODE];            /* 定义一个结点结构体数组 */

       HCodeType HuffCode[MAXLEAF],  cd;       /* 定义一个编码结构体数组, 同时定义一个临时变量来存放求解编码时的信息 */

       int i, j, c, p, n;

       char pp[];

       printf ("Please input n:\n");

       scanf ("%d", &n);

       HuffmanTree (HuffNode, n);

       for (i=0; i < n; i++)

       {

       cd.start = n-1;

       c = i;

       p = HuffNode[c].parent;

       while (p != -1)   /* 父结点存在 */

       {

       if (HuffNode[p].lchild == c)

       cd.bit[cd.start] = 0;

       else

       cd.bit[cd.start] = 1;

       cd.start--;        /* 求编码的低一位 */

       c=p;

       p=HuffNode[c].parent;    /* 设置下一循环条件 */

       } /* end while */

       /* 保存求出的每个叶结点的哈夫曼编码和编码的起始位 */

       for (j=cd.start+1; j<n; j++)

       { HuffCode[i].bit[j] = cd.bit[j];}

       HuffCode[i].start = cd.start;

       } /* end for */

       /* 输出已保存好的所有存在编码的哈夫曼编码 */

       for (i=0; i<n; i++)

       {

       printf ("%d 's Huffman code is: ", i);

       for (j=HuffCode[i].start+1; j < n; j++)

       {

       printf ("%d", HuffCode[i].bit[j]);

       }

       printf(" start:%d",HuffCode[i].start);

       printf ("\n");

       }

       /*    for(i=0;i<n;i++){

       for(j=0;j<n;j++)

       {

       printf ("%d", HuffCode[i].bit[j]);

       }

       printf("\n");

       }*/

       printf("Decoding?Please Enter code:\n");

       scanf("%s",&pp);

       decodeing(pp,HuffNode,n);

       getch();

       return 0;

       }

本文地址:http://04.net.cn/news/46e93699017.html 欢迎转发