1.python中的源码iterable是什么意思
2.Python之Iterable与Iterator
3.PyTorch 源码解读之 torch.utils.data:解析数据处理全流程
4.Python:Iterable、Iterator和Generator小结
python中的源码iterable是什么意思
Python中的Iterable表示可迭代对象。 解释如下: 在Python中,源码Iterable是源码那些可以被循环遍历的数据类型或对象的集合。当我们谈论一个对象是源码可迭代的,意味着我们可以使用for循环来遍历该对象的源码INTL码支付全套源码每一个元素。这些对象包括但不限于列表、源码元组、源码字典、源码集合以及字符串等。源码除此之外,源码生成器和某些自定义的源码迭代器也是可迭代的。 当我们对一个可迭代对象使用for循环时,源码Python会自动处理对象的源码迭代过程,我们无需关心底层的源码细节。这是Python简洁易用的特性之一。为了更好地理解这一概念,可以想象一个可迭代对象就像一个包含了多个元素的容器,我们可以依次访问这些元素,直到所有的元素都被访问过。每一次迭代,都会处理容器中的下一个元素。当所有的个人发卡api接口源码元素都被处理完,迭代过程也就结束了。 简而言之,Iterable在Python中是一个非常重要的概念,它使得我们可以方便地遍历和操作各种类型的数据结构。当我们编写需要循环处理数据的代码时,理解并正确使用可迭代对象是非常关键的。通过掌握可迭代对象,我们可以更高效地编写出简洁、清晰的Python代码。Python之Iterable与Iterator
Python中的Iterable与Iterator深入理解
首先,我们来理解这两个概念。Iterable,即可迭代对象,它具有确定的序列长度,如列表、元组、字典和字符串等,遵循可迭代协议。可迭代协议涉及的是对象拥有__iter__()方法,表示可以生成一系列元素。 Iterator,或迭代器,免费名片小程序源码是可迭代对象的进一步实现。它不知道自身包含多少元素,通过调用__next__()方法逐个访问,是惰性执行的,适合处理大量数据。迭代器需要同时实现__iter__()和__next__()方法,以满足迭代器协议。 关于两者的关系,Iterator实际上是从Iterable派生的,也就是说,一个类如果实现了迭代协议(拥有__iter__()),那么它就是Iterable;而同时具备__iter__()和__next__()的类则可以被称为Iterator。通过iter()函数,可以将Iterable转换为Iterator,其原理是调用__iter__()方法获取迭代器对象。 判断一个对象是否是Iterable或Iterator,可以使用isinstance()函数。虽然Iterator一定是Iterable,但并非所有Iterable都是Iterator。例如,List是Iterable但不是Iterator,因为List没有__next__()方法。python数据源码免费 自定义迭代器,如EvenIterators类,只需实现__iter__()和next()方法即可。在处理迭代问题时,需要注意迭代器的生命周期,当迭代器用尽后,再调用__next__()会抛出异常。解决方法是创建新的迭代器,确保它们访问的是不同的内存地址,通过浅复制或深复制来避免共享数据。 切记,不能对迭代器进行切片赋值或直接使用copy方法(因迭代器中可能没有对应的方法),这时应使用copy模块来实现浅复制或深复制。PyTorch 源码解读之 torch.utils.data:解析数据处理全流程
文@ 目录 0 前言 1 Dataset 1.1 Map-style dataset 1.2 Iterable-style dataset 1.3 其他 dataset 2 Sampler 3 DataLoader 3.1 三者关系 (Dataset, Sampler, Dataloader) 3.2 批处理 3.2.1 自动批处理(默认) 3.2.2 关闭自动批处理 3.2.3 collate_fn 3.3 多进程处理 (multi-process) 4 单进程 5 多进程 6 锁页内存 (Memory Pinning) 7 预取 (prefetch) 8 代码讲解 0 前言 本文以 PyTorch 1.7 版本为例,解析 torch.utils.data 模块在数据处理流程中的应用。 理解 Python 中的迭代器是解读 PyTorch 数据处理逻辑的关键。Dataset、Sampler 和 DataLoader 三者共同构建数据处理流程。 迭代器通过实现 __iter__() 和 __next__() 方法,支持数据的循环访问。Dataset 提供数据获取接口,Sampler 控制遍历顺序,付费查看答案网站源码DataLoader 负责加载和批处理数据。 1 Dataset Dataset 包括 Map-style 和 Iterable-style 两种,分别用于索引访问和迭代访问数据。 Map-style dataset 通过实现 __getitem__() 和 __len__() 方法,支持通过索引获取数据。 Iterable-style dataset 实现 __iter__() 方法,适用于随机访问且批次大小依赖于获取数据的场景。 2 Sampler Sampler 用于定义数据遍历的顺序,支持用户自定义和 PyTorch 提供的内置实现。 3 DataLoader DataLoader 是数据加载的核心,支持 Map-style 和 Iterable-style Dataset,提供单多进程处理和批处理等功能。 通过参数配置,如 batch_size、drop_last、collate_fn 等,DataLoader 实现了数据的自动和手动批处理。 4 批处理 3.2.1 自动批处理(默认) DataLoader 默认使用自动批处理,通过参数控制批次生成和样本整理。 3.2.2 关闭自动批处理 关闭自动批处理,允许用户自定义批处理逻辑或处理单个样本。 3.2.3 collate_fn collate_fn 是手动批处理时的关键,用于整理单个样本为批次。 5 多进程 多进程处理通过 num_workers 参数启用,加速数据加载。 6 单进程 单进程模式下,数据加载可能影响计算流程,适用于数据量小且无需多进程的场景。 7 锁页内存 (Memory Pinning) Memory Pinning 技术确保数据在 GPU 加速过程中快速传输,提高性能。 8 代码讲解 通过具体代码分析,展示了 DataLoader 的初始化、迭代和数据获取过程,涉及迭代器、Sampler 和 Dataset 的交互。Python:Iterable、Iterator和Generator小结
这三个概念在Python中极为关键,因为迭代是数据处理的根本。在先前的文章《C/C++杂谈:迭代器小结》中,我们深入分析了迭代器在C++标准库中的实现方式,本文将继续探讨Python中相关的概念。
一、Iterable
引用Python官方文档的定义(docs.python.org/3.8/glo...),简单来说,可迭代对象是指可以使用iter内置函数获取迭代器的对象,即对象实现了__iter__方法,或者实现了__getitem__方法。例如,内置序列类型str、list、tuple等的对象都是可迭代对象。
如果对象不是可迭代的,那么使用iter内置函数操作时会引起TypeError异常。也可以用isinstance来判断一个对象是否是可迭代对象。需要注意的是,判断对象x是否可以迭代,使用iter(x)内置函数更准确,它会考虑到__getitem__方法,而用isinstance(x, abc.Iterable)的话,则不会考虑。
二、Iterator
通过下图来看一下它和Iterable之间的关系:
可见Iterable是Iterator的基类,不同的是Iterator实现了一个抽象方法__next__。来看Python的官方文档的定义(docs.python.org/3.8/glo...),简单来说,迭代器实现了无参的__next__方法,返回序列的下一个元素,如果没有元素了,就抛出StopIteration异常,迭代器中还要实现__iter__方法,因为迭代器对象本身也是可迭代对象。顺便直接看下迭代器的代码定义(github.com/python/cpyth...)。同样可以使用isinstance来判断一个对象是不是迭代器对象。
我感觉Python的迭代器模式和前文《C/C++杂谈:迭代器小结》中讲到的C++中迭代器模式大同小异,都有下面这些特点:
下面举个例子来看一下迭代器的使用,可以观察到在访问完所有的元素后会抛出StopIteration异常。
其实迭代器本质上表示一个数据流,可被 next() 函数不断调用,从首项开始不断返回下一个数据,可以用for循环作为示例,它实质上是对可迭代对象调用 iter返回一个关于该对象的迭代器,然后不断调用next访问元素,比如下面的for语句:
实际上等价于下面代码段:
三、Generator
先看官方定义(docs.python.org/3.8/glo...),简单来说,只要函数中有yield关键字,这个函数就是生成器函数,调用生成器函数会返回一个生成器对象,生成器也是迭代器,语法类似于函数,但不返回值,可以简单理解为生成器函数使用yield返回结果,下面看一个示例:
从上面示例可以看到,在调用生成器函数时,会返回一个生成器,前面已经讲过,生成器也是迭代器,可以使用next内置函数来使用这个生成器对象,每次next都会yield一个值出去,与此同时生成器函数就会暂停并保存当前的执行状态,在下一次对生成器函数执行next方法时,从上次离开的位置继续执行,这里感觉有点像协程。个人感觉生成器的最大作用是lazy evaluation,这是相对eager evaluation来说的(lazy和eager的概念,在深度学习框架中也被用到了),以求斐波那契数列为例:
四、Generator expression
在说生成器表达式之前,需要先说一下列表推导,它可以被当成制造列表的工厂,表达式使用中括号括起来。而生成器表达式可以看作为列表推导的lazy版本,它不会马上构建列表,而是返回一个生成器,用lazy的方式按需生成元素,表达式需要使用小括号括起来。本质上来讲,生成器表达式是语法糖,它完全可以替换成生成器函数,不过有时候使用生成器表达式更方便一些。
五、Reference
本文参考了下面的这些资料: