【前端特效源码大全】【uhf源码】【cookies源码】回收算法源码_回收算法源码是什么

2025-01-11 18:19:22 来源:溯源码茶青 分类:知识

1.解Linux内存回收之LRU算法(超级详细~)
2.Java语言的特点
3.linux内核源码:内存管理——内存分配和释放关键函数分析&ZGC垃圾回收
4.深入理解Linux内核内存回收逻辑和算法(LRU)
5.各种PID控制算法及C代码总结

回收算法源码_回收算法源码是回收回收什么

解Linux内存回收之LRU算法(超级详细~)

       好文推荐:

       全网最牛Linux内核分析--Intel CPU体系结构

       一文让你读懂Linux五大模块内核源码,内核整体架构设计(超详细)

       嵌入式前景真的算法算法好吗?那有点悬!

       一文教你如何使用GDB+Qemu调试Linux内核

       Linux内核必读五本书籍(强烈推荐)

       全网独一无二Linux内核Makefle系统文件详解(一)(纯文字代码)

       带你深度了解Linux内核架构和工作原理!源码源码

       本文使用 Linux-2.6. 版本内核。回收回收

       由于进程的算法算法内存空间分为多个段,如代码段、源码源码前端特效源码大全数据段、回收回收mmap段、算法算法堆段 和 栈段 等。源码源码那么,回收回收哪些段的算法算法内存会被交换到硬盘中呢? 答案就是:所有段的内存都有可能交换到硬盘。不过对于 代码段 和 mmap段 这些与文件有映射关系的源码源码内存区,只需要将数据写回到文件即可(由于代码段的回收回收内容不会改变,所以不用进行回写)。算法算法

       文章福利小编推荐自己的源码源码Linux内核技术交流群: 整理了一些个人觉得比较好的学习书籍、视频资料共享在群文件里面,有需要的可以自行添加哦!!!前名进群领取,额外赠送大厂面试题。uhf源码

       学习直通车:

       内核资料直通车:

       1. LRU 内存淘汰算法

       把某个进程的匿名内存页 写入到 交换分区 后,进程又马上访问这个内存页,从而又要把这个内存页从 交换分区 中读入到内存中。这样只会增加系统的负荷,并且不能解决系统内存不足的问题。

       LRU(Least Recently Used) 中文翻译是 最近最少使用 的意思,其原理就是:当内存不足时,淘汰系统中最少使用的内存,这样对系统性能的损耗是最小的。

       2. LRU算法状态流转

       转载地址: 图解 | Linux内存回收之LRU算法

Java语言的特点

       ä¸€ã€Java语言特点

        Java是一种跨平台,适合于分布式计算环境的面向对象编程语言。

        具体来说,它具有如下特性:

        简单性、面向对象、分布式、解释型、可靠、安全、平台无关、可移植、高性能、多线程、动态性等。

        下面我们将重点介绍Java语言的面向对象、平台无关、分布式、多线程、可靠和安全等特性。

        1.面向对象

        面向对象其实是现实世界模型的自然延伸。现实世界中任何实体都可以看作是对象。对象之间通过消息相互作用。另外,现实世界中任何实体都可归属于某类事物,任何对象都是某一类事物的实例。如果说传统的过程式编程语言是以过程为中心以算法为驱动的话,面向对象的编程语言则是以对象为中心以消息为驱动。用公式表示,过程式编程语言为:程序=算法+数据;面向对象编程语言为:程序=对象+消息。

        所有面向对象编程语言都支持三个概念:封装、多态性和继承,Java也不例外。现实世界中的对象均有属性和行为,映射到计算机程序上,属性则表示对象的数据,行为表示对象的方法(其作用是处理数据或同外界交互)。所谓封装,就是用一个自主式框架把对象的数据和方法联在一起形成一个整体。可以说,对象是支持封装的手段,是封装的基本单位。Java语言的封装性较强,因为Java无全程变量,无主函数,在Java中绝大部分成员是对象,只有简单的数字类型、字符类型和布尔类型除外。而对于这些类型,Java也提供了相应的对象类型以便与其他对象交互操作。

        多态性就是多种表现形式,具体来说,可以用“一个对外接口,多个内在实现方法”表示。举一个例子,计算机中的堆栈可以存储各种格式的数据,包括整型,浮点或字符。不管存储的是何种数据,堆栈的算法实现是一样的。针对不同的数据类型,编程人员不必手工选择,只需使用统一接口名,系统可自动选择。运算符重载(operatoroverload)一直被认为是一种优秀的多态机制体现,但由于考虑到它会使程序变得难以理解,所以Java最后还是把它取消了。

        继承是指一个对象直接使用另一对象的属性和方法。事实上,我们遇到的很多实体都有继承的含义。例如,若把汽车看成一个实体,它可以分成多个子实体,如:卡车、公共汽车等。这些子实体都具有汽车的特性,因此,汽车是它们的“父亲”,而这些子实体则是汽车的“孩子”。Java提供给用户一系列类(class),Java的类有层次结构,子类可以继承父类的属性和方法。与另外一些面向对象编程语言不同,Java只支持单一继承。

        2�平台无关性

        Java是平台无关的语言是指用Java写的应用程序不用修改就可在不同的软硬件平台上运行。平台无关有两种:源代码级和目标代码级。C和C++具有一定程度的源代码级平台无关,表明用C或C++写的应用程序不用修改只需重新编译就可以在不同平台上运行。

        Java主要靠Java虚拟机(JVM)在目标码级实现平台无关性。JVM是一种抽象机器,它附着在具体操作系统之上,本身具有一套虚机器指令,并有自己的栈、寄存器组等。但JVM通常是在软件上而不是在硬件上实现。(目前,SUN系统公司已经设计实现了Java芯片,主要使用在网络计算机NC上。

        另外,Java芯片的出现也会使Java更容易嵌入到家用电器中。)JVM是Java平台无关的基础,在JVM上,有一个Java解释器用来解释Java编译器编译后的程序。Java编程人员在编写完软件后,通过Java编译器将Java源程序编译为JVM的字节代码。任何一台机器只要配备了Java解释器,就可以运行这个程序,而不管这种字节码是在何种平台上生成的。另外,Java采用的是基于IEEE标准的数据类型。通过JVM保证数据类型的一致性,也确保了Java的平台无关性。

        Java的平台无关性具有深远意义。首先,它使得编程人员所梦寐以求的事情(开发一次软件在任意平台上运行)变成事实,这将大大加快和促进软件产品的开发。其次Java的平台无关性正好迎合了“网络计算机”思想。如果大量常用的应用软件(如字处理软件等)都用Java重新编写,并且放在某个Internet服务器上,那么具有NC的用户将不需要占用大量空间安装软件,他们只需要一个

        Java解释器,每当需要使用某种应用软件时,下载该软件的字节代码即可,运行结果也可以发回服务器。目前,已有数家公司开始使用这种新型的计算模式构筑自己的企业信息系统。

       3�分布式

        分布式包括数据分布和操作分布。数据分布是指数据可以分散在网络的不同主机上,操作分布是指把一个计算分散在不同主机上处理。

        Java支持WWW客户机/服务器计算模式,因此,它支持这两种分布性。对于前者,Java提供了一个叫作URL的对象,利用这个对象,你可以打开并访问具有相同URL地址上的对象,访问方式与访问本地文件系统相同。对于后者,Java的applet小程序可以从服务器下载到客户端,即部分计算在客户端进行,提高系统执行效率。

        Java提供了一整套网络类库,开发人员可以利用类库进行网络程序设计,方便得实现Java的分布式特性。

        4�可靠性和安全性

        Java最初设计目的是应用于电子类消费产品,因此要求较高的可靠性。Java虽然源于C++,但它消除了许多C++不可靠因素,可以防止许多编程错误。首先,Java是强类型的语言,要求显式的方法声明,这保证了编译器可以发现方法调用错误,保证程序更加可靠;其次,Java不支持指针,这杜绝了内存的非法访问;第三,Java的自动单元收集防止了内存丢失等动态内存分配导致的问题;第四,Java解释器运行时实施检查,可以发现数组和字符串访问的越界,最后,Java提供了异常处理机制,程序员可以把一组错误代码放在一个地方,这样可以简化错误处理任务便于恢复。

        由于Java主要用于网络应用程序开发,因此对安全性有较高的要求。如果没有安全保证,用户从网络下载程序执行就非常危险。Java通过自己的安全机制防止了病毒程序的产生和下载程序对本地系统的威胁破坏。当Java字节码进入解释器时,首先必须经过字节码校验器的检查,然后,Java解释器将决定程序中类的内存布局,随后,类装载器负责把来自网络的类装载到单独的内存区域,避免应用程序之间相互干扰破坏。最后,客户端用户还可以限制从网络上装载的类只能访问某些文件系统。

        上述几种机制结合起来,使得Java成为安全的编程语言。

        5�多线程

        线程是操作系统的一种新概念,它又被称作轻量进程,是比传统进程更小的可并发执行的单位。

        C和C++采用单线程体系结构,而Java却提供了多线程支持。

        Java在两方面支持多线程。一方面,Java环境本身就是多线程的。若干个系统线程运行负责必要的无用单元回收,系统维护等系统级操作;另一方面,Java语言内置多线程控制,可以大大简化多线程应用程序开发。Java提供了一个类Thread,由它负责启动运行,终止线程,并可检查线程状态。Java的线程还包括一组同步原语。这些原语负责对线程实行并发控制。利用Java的多线程编程接口,开发人员可以方便得写出支持多线程的应用程序,提高程序执行效率。必须注意地是,Java的多线程支持在一定程度上受运行时支持平台的限制。例如,如果操作系统本身不支持多线程,Java的多线程特性可能就表现不出来。

        二、Java小程序和应用程序

        用Java可以写两种类型的程序:小程序(又叫JavaApplet)和应用程序(JavaApplication)。小程序是嵌入在HTML文档中的Java程序;而Java应用程序是从命令行运行的程序。对Java而言,Java小程序的大小和复杂性都没有限制。事实上,Java小程序有些方面比Java应用程序更强大。但是由于目前Internet通讯速度有限,因此大多数小程序规模较小。小程序和应用程序之间的技术差别在于运行环境。

        Java应用程序运行在最简单的环境中,它的唯一外部输入就是命令行参数。另一方面,Java小程序则需要来自Web浏览器的大量信息:它需要知道何时启动,何时放入浏览器窗口,何处,何时激活关闭。由于这两种不同的执行环境,小程序和应用程序的最低要求不同。

        由于WWW使小程序的发布十分便利,因此小程序更适合作为Internet上的应用程序。相反,非网络系统和内存较小的系统更适合用Java应用程序而较少用Java小程序实现。另外,Java应用程序也很容易以Internet为基础环境,事实上有些优秀的Java应用程序正是如此。

linux内核源码:内存管理——内存分配和释放关键函数分析&ZGC垃圾回收

       本文深入剖析了Linux内核源码中的内存管理机制,重点关注内存分配与释放的关键函数,通过分析4.9版本的源码,详细介绍了slab算法及其核心代码实现。在内存管理中,slab算法通过kmem_cache结构体进行管理,利用数组的形式统一处理所有的kmem_cache实例,通过size_index数组实现对象大小与kmem_cache结构体之间的映射,从而实现高效内存分配。其中,关键的cookies源码计算方法是通过查找输入参数的最高有效位序号,这与常规的0起始序号不同,从1开始计数。

       在找到合适的kmem_cache实例后,下一步是通过数组缓存(array_cache)获取或填充slab对象。若缓存中有可用对象,则直接从缓存分配;若缓存已空,会调用cache_alloc_refill函数从三个slabs(free/partial/full)中查找并填充可用对象至缓存。在对象分配过程中,array_cache结构体发挥了关键作用,它不仅简化了内存管理,还优化了内存使用效率。

       对象释放流程与分配流程类似,涉及数组缓存的管理和slab对象的回收。在cache_alloc_refill函数中,关键操作是检查slab_partial和slab_free队列,寻找空闲的对象以供释放。整个过程确保了内存资源的高效利用,避免了资源浪费。

       总结内存操作函数概览,栈与堆的nanoid源码区别是显而易见的。栈主要存储函数调用参数、局部变量等,而堆用于存放new出来的对象实例、全局变量、静态变量等。由于堆的动态分配特性,它无法像栈一样精准预测内存使用情况,导致内存碎片问题。为了应对这一挑战,Linux内核引入了buddy和slab等内存管理算法,以提高内存分配效率和减少碎片。

       然而,即便使用了高效的内存管理算法,内存碎片问题仍难以彻底解决。在C/C++中,没有像Java那样的自动垃圾回收机制,导致程序员需要手动管理内存分配与释放。如果忘记释放内存,将导致资源泄漏,影响系统性能。假冒源码为此,业界开发了如ZGC和Shenandoah等垃圾回收算法,以提高内存管理效率和减少内存碎片。

       ZGC算法通过分页策略对内存进行管理,并利用“初始标记”阶段识别GC根节点(如线程栈变量、静态变量等),并查找这些节点引用的直接对象。此阶段采用“stop the world”(STW)策略暂停所有线程,确保标记过程的准确性。接着,通过“并发标记”阶段识别间接引用的对象,并利用多个GC线程与业务线程协作提高效率。在这一过程中,ZGC采用“三色标记”法和“remember set”机制来避免误回收正常引用的对象,确保内存管理的精准性。

       接下来,ZGC通过“复制算法”实现内存回收,将正常引用的对象复制到新页面,将旧页面的数据擦除,从而实现内存的高效管理。此外,通过“初始转移”和“并发转移”阶段进一步优化内存管理过程。最后,在“对象重定位”阶段,完成引用关系的更新,确保内存管理过程的完整性和一致性。

       通过实测,ZGC算法在各个阶段展现出高效的内存管理能力,尤其是标记阶段的效率,使得系统能够在保证性能的同时,有效地管理内存资源。总之,内存管理是系统性能的关键因素,Linux内核通过先进的算法和策略,实现了高效、灵活的内存管理,为现代操作系统提供稳定、可靠的服务。

深入理解Linux内核内存回收逻辑和算法(LRU)

       在Linux内存管理中,LRU链表策略扮演着核心角色。操作系统通过active链表和inactive链表来跟踪内存页面的活跃程度,活跃页面在链表的前端,不活跃页面则位于后端。当页面被访问,活跃页面PG_active位会被置位,而PG_referenced位记录页面最近是否被访问。若长时间未被访问,PG_referenced位会被清除,进而可能从active链表转移到inactive链表。

       struct zone中包含这些链表的关键字段,用于在活跃和不活跃页面之间移动。Linux通过PG_active和PG_referenced标志判断页面状态,避免过度依赖单一标志导致的活跃状态误判。Linux 2.6版本中,这两个标志在特定条件下协同工作,如页面频繁访问则从inactive链表移到active链表,反之则可能被清除。

       页面移动的关键操作由函数如mark_page_accessed(), page_referenced(), activate_page()和shrink_active_list()执行。为减少锁竞争,Linux引入LRU缓存,通过pagevec结构批量管理页面,当缓存满时,页面才会一次性添加到链表中。

       PFRA处理多种来源的页面,涉及free_more_memory()和try_to_free_pages()等函数。页面回收分为内存不足触发和后台进程kswapd定期操作,前者通过try_to_free_pages()检查并回收最不常用的页面,后者则通过balance_pgdat()调用shrink_zone()和shrink_slab()进行回收。

       shrink_zone()的核心功能是将活跃页面移至不活跃链表,并回收不活跃链表中的页面。shrink_slab()则针对磁盘缓存页面的回收,通过shrinker函数进行处理。这些函数的源代码实现细节丰富,涉及内存分配和回收的复杂逻辑。

各种PID控制算法及C代码总结

       PID控制算法总结

       PID控制算法是工业应用中的基石,简单却强大。本文详尽介绍了各种PID控制的C代码实现,从基础原理到实际应用,包括:

       纯物理意义:PID控制通过误差信号调节输出,包括比例、积分和微分三个环节。

       应用实例:尤其适用于直流电机调速,通过编码器反馈,实现精密控制。

       功能模块:如无刷FOC控制、有刷电机控制、舵机控制等,具备能量回收、电流缓冲控制等特性。

       硬件配置:包括主控板、驱动板、电源板等,以及通信接口和传感器支持。

       代码实现:包含双霍尔FOC、无感FOC、编码器FOC源码,以及远程调试APP和通信接口代码。

       参数整定:通过调整比例Kp、积分Ki和微分Kd,平衡响应速度、精度与动态性能。

       进阶技巧:如积分分离、抗饱和控制、梯形积分和变积分策略,提高系统的稳定性和响应速度。

       智能PID:模糊PID在非线性系统中的应用,利用模糊规则智能调节控制器参数。

       通过一系列的C语言代码,无论是初学者还是经验丰富的工程师,都能掌握并应用PID算法进行高效控制。

本文地址:http://04.net.cn/news/45c393496020.html 欢迎转发