1.Springboot之分布式事务框架Seata实现原理源码分析
2.Spring源码系列-BeanPostProcessor与BeanFactoryPostProcessor
3.76 张图,代理代理剖析 Spring AOP 源码,源码小白居然也能看懂,代理代理大神,源码请收下我的代理代理膝盖!
4.谈谈Spring中的源码逐鹿源码NoSuchBeanDefinitionException源码
5.SpringCloud原理OpenFeign之FeignClient动态代理生成原理
6.springâAOPä¸äºå¡
Springboot之分布式事务框架Seata实现原理源码分析
在SpringBoot环境下的分布式事务框架Seata实现原理涉及到了代理数据源、注册代理Bean以及全局事务拦截器等关键环节。代理代理下面我们将逐步解析其核心逻辑。源码
首先,代理代理Seata通过GlobalTransactionScanner来注册项目中所有带有@GlobalTransactional注解的源码方法类。该扫描器是代理代理一个实现了BeanPostProcessor接口的类,它能够在Spring容器初始化时进行后置处理,源码从而实现全局事务的代理代理管理。
GlobalTransactionScanner实际上是源码一个InstantiationAwareBeanPostProcessor,它在实例化Bean前执行postProcessBeforeInstantiation方法,代理代理在实例化后执行postProcessAfterInstantiation方法,并在属性填充时执行postProcessProperties方法。尽管GlobalTransactionScanner类本身并未覆盖这3个方法,但在父类的实现中,这些方法用于处理Bean的实例化和属性设置过程。
关键在于postProcessAfterInitialization方法中实现的wrapIfNecessary方法,该方法在GlobalTransactionScanner类中被重写。当方法执行到existsAnnotation方法判断类方法是否带有@GlobalTransactional注解时,如果存在则创建一个GlobalTransactionalInterceptor作为拦截器处理全局事务。
在创建代理数据源时,Seata通过DataSourceProxy对系统默认数据源进行代理处理。通过shouldSkip方法判断当前bean是否需要被代理,如果bean是SeataProxy的子类且不是DataSource的子类且不在excludes集合中,则进行代理,从而代理当前系统的默认数据源对象。
全局事务拦截器主要负责全局事务的发起、执行和回滚。在执行全局事务的方法被代理时,具体的执行拦截器是GlobalTransactionalInterceptor。该拦截器处理全局事务的逻辑,包括获取全局事务、开始全局事务、执行本地业务、提交本地事务、记录undo log、提交数据更新等步骤。其中,提交本地事务时会向TC(Transaction Coordinator)注册分支并提交本地事务,整个过程确保了分布式事务的一致性。
当全局事务中任何一个分支发生异常时,镜像网站程序源码事务将被回滚。参与全局事务的组件在异常发生时执行特定的回滚逻辑,确保事务一致性。在Seata的实现中,异常处理机制确保了事务的回滚能够正确执行。
Seata还提供了XID(Transaction Identifier)的传递机制,通过RestTemplate和Feign客户端进行服务间的调用,确保分布式系统中各个服务能够共享和处理全局事务。RestTemplate在请求头中放置TX_XID头信息,而Feign客户端通过从调用链中获取Feign.Builder,最终通过SeataHystrixFeignBuilder.builder方法实现XID的传递。
在被调用端(通过Feign调用服务),Seata自动配置会创建数据源代理,使得事务方法执行时能够获取到连接对象,而这些连接对象已经被代理成DataSourceProxy。SeataHandlerInterceptor拦截器对所有请求进行拦截,从Header中获取TX_XID,参与者的XID绑定到上下文中,通过ConnectionProxy获取代理连接对象。在数据库操作中,XID绑定到ConnectionContext,执行SQL语句时通过StatementProxy或PreparedStatementProxy代理连接,从而完成全局事务的处理。
综上所述,Seata通过一系列复杂的逻辑和机制,实现了SpringBoot环境下的分布式事务管理,确保了分布式系统中数据的一致性和可靠性。
Spring源码系列-BeanPostProcessor与BeanFactoryPostProcessor
在Spring框架中,BeanPostProcessor与BeanFactoryPostProcessor各自承担着不同的职责,它们在IoC容器的工作流程中起着关键作用。
BeanFactoryPostProcessor作用于BeanDefinition阶段,对容器中Bean的定义进行处理。这个过程发生在BeanFactory初始化时,对BeanDefinition进行修改或增强,提供了一种在不修改源代码的情况下定制Bean的机制。相比之下,BeanPostProcessor则在Bean实例化之后生效,对已经创建的Bean对象进行进一步处理或替换,提供了更晚、更灵活的扩展点。
以制造杯子为例,BeanFactoryPostProcessor相当于在选择材料和形状阶段进行定制,而BeanPostProcessor则在杯子制造完成后,进行诸如加花纹、物联平台源码抛光等深加工。
在Spring框架中,BeanPostProcessor的使用场景较为广泛,尤其在实现AOP(面向切面编程)时,通过使用代理类替换原始Bean,实现如日志记录、事务管理等功能。
此外,容器在启动后,还会进行消息源初始化、广播器初始化及监听器初始化,为Bean实例化做好准备。完成这些准备工作后,容器会调用registerBeanPostProcessors方法注册BeanPostProcessor,对已创建的Bean进行进一步处理。同时,初始化消息源、广播器和监听器,为后续事件处理做好基础。
总结,BeanFactoryPostProcessor与BeanPostProcessor在Spring IoC容器中的作用各有侧重。前者侧重于对BeanDefinition的定制,后者则是在Bean实例化后的进一步加工,两者共同为构建灵活、可扩展的IoC容器提供了强大的支持。
在深入分析Spring框架的源码时,我们发现refresh()方法的实现中包含了对BeanFactoryPostProcessor和BeanPostProcessor的注册与处理。这些处理步骤确保了容器能够在启动时对Bean进行正确的配置和初始化。
文章中通过一个例子展示了如何使用BeanFactoryPostProcessor替换已注册Bean的实现,以及对其源码的分析。通过例子和源码的结合,读者能够更直观地理解这些后置处理器在Spring框架中的应用和工作原理。
张图,剖析 Spring AOP 源码,小白居然也能看懂,大神,请收下我的膝盖!
本文将简要介绍AOP(面向切面编程)的基础知识与使用方法,并深入剖析Spring AOP源码。首先,我们需要理解AOP的基本概念。
1. **基础知识
**1.1 **什么是AOP?
**AOP全称为Aspect Oriented Programming,即面向切面编程。AOP的资源目录源码思想中,周边功能(如性能统计、日志记录、事务管理等)被定义为切面,核心功能与切面功能独立开发,然后将两者“编织”在一起,这就是AOP的核心。
AOP能够将与业务无关、却为业务模块共同调用的逻辑封装,减少系统重复代码,降低模块间的耦合度,有利于系统的可扩展性和可维护性。
1.2 **AOP基础概念
**解释较为官方,以下用“方言”解释:AOP包括五种通知分类。
1.3 **AOP简单示例
**创建`Louzai`类,添加`LouzaiAspect`切面,并在`applicationContext.xml`中配置。程序入口处添加`"睡觉"`方法并添加前置和后置通知。接下来,我们将探讨Spring内部如何实现这一过程。
1.4 **Spring AOP工作流程
**为了便于理解后面的源码,我们将整体介绍源码执行流程。整个Spring AOP源码分为三块,结合示例进行讲解。
第一块是前置处理,创建`Louzai`Bean前,遍历所有切面信息并存储在缓存中。第二块是后置处理,创建`Louzai`Bean时,主要处理两件事。第三块是执行切面,通过“责任链+递归”执行切面。
2. **源码解读
**注意:Spring版本为5.2..RELEASE,否则代码可能不同!这里,我们将从原理部分开始,逐步深入源码。
2.1 **代码入口
**从`getBean()`函数开始,进入创建Bean的逻辑。
2.2 **前置处理
**主要任务是遍历切面信息并存储。
这是重点!请务必注意!获取切面信息流程结束,后续操作都从缓存`advisorsCache`获取。
2.2.1 **判断是html色条源码否为切面
**执行逻辑为:判断是否包含切面信息。
2.2.2 **获取切面列表
**进入`getAdvice()`,生成切面信息。
2.3 **后置处理
**主要从缓存拿切面,与`Louzai`方法匹配,创建AOP代理对象。
进入`doCreateBean()`,执行后续逻辑。
2.3.1 **获取切面
**首先,查看如何获取`Louzai`的切面列表。
进入`buildAspectJAdvisors()`,方法用于存储切面信息至缓存`advisorsCache`。随后回到`findEligibleAdvisors()`,从缓存获取所有切面信息。
2.3.2 **创建代理对象
**有了`Louzai`的切面列表,开始创建AOP代理对象。
这是重点!请仔细阅读!这里有两种创建AOP代理对象方式,我们选择使用Cglib。
2.4 **切面执行
**通过“责任链+递归”执行切面与方法。
这部分逻辑非常复杂!接下来是“执行切面”最核心的逻辑,简述设计思路。
2.4.1 **第一次递归
**数组第一个对象执行`invoke()`,参数为`CglibMethodInvocation`。
执行完毕后,继续执行`CglibMethodInvocation`的`process()`。
2.4.2 **第二次递归
**数组第二个对象执行`invoke()`。
2.4.3 **第三次递归
**数组第三个对象执行`invoke()`。
执行完毕,退出递归,查看`invokeJoinpoint()`执行逻辑,即执行主方法。回到第三次递归入口,继续执行后续切面。
切面执行逻辑已演示,直接查看执行方法。
流程结束时,依次退出递归。
2.4.4 **设计思路
**这部分代码研究了大半天,因为这里不是纯粹的责任链模式。
纯粹的责任链模式中,对象内部有一个自身的`next`对象,执行当前对象方法后,启动`next`对象执行,直至最后一个`next`对象执行完毕,或中途因条件中断执行,责任链退出。
这里`CglibMethodInvocation`对象内部无`next`对象,通过`interceptorsAndDynamicMethodMatchers`数组控制执行顺序,依次执行数组中的对象,直至最后一个对象执行完毕,责任链退出。
这属于责任链,实现方式不同,后续会详细剖析。下面讨论类之间的关系。
主对象为`CglibMethodInvocation`,继承于`ReflectiveMethodInvocation`,`process()`的核心逻辑在`ReflectiveMethodInvocation`中。
`ReflectiveMethodInvocation`的`process()`控制整个责任链的执行。
`ReflectiveMethodInvocation`的`process()`方法中,包含一个长度为3的数组`interceptorsAndDynamicMethodMatchers`,存储了3个对象,分别为`ExposeInvocationInterceptor`、`MethodBeforeAdviceInterceptor`、`AfterReturningAdviceInterceptor`。
注意!这3个对象都继承了`MethodInterceptor`接口。
每次`invoke()`调用时,都会执行`CglibMethodInvocation`的`process()`。
是否有些困惑?别着急,我将再次帮你梳理。
对象与方法的关系:
可能有同学疑惑,`invoke()`的参数为`MethodInvocation`,没错!但`CglibMethodInvocation`也继承了`MethodInvocation`,可自行查看。
执行逻辑:
设计巧妙之处在于,纯粹的责任链模式中,`next`对象需要保证类型一致。但这里3个对象内部没有`next`成员,不能直接使用责任链模式。怎么办呢?就单独设计了`CglibMethodInvocation.process()`,通过无限递归`process()`实现责任链逻辑。
这就是我们为什么要研究源码,学习优秀的设计思路!
3. **总结
**本文首先介绍了AOP的基本概念与原理,通过示例展示了AOP的应用。之后深入剖析了Spring AOP源码,分为三部分。
本文是Spring源码解析的第三篇,感觉是难度较大的一篇。图解代码花费了6个小时,整个过程都沉浸在代码的解析中。
难度不在于抠图,而是“切面执行”的设计思路,即使流程能走通,将设计思想总结并清晰表达给读者,需要极大的耐心与理解能力。
今天的源码解析到此结束,有关Spring源码的学习,大家还想了解哪些内容,欢迎留言给楼仔。
谈谈Spring中的NoSuchBeanDefinitionException源码
组织 spring 框架的基本知识后,我们容易发现NoSuchBeanDefinitionException 是常见问题,多数 spring 开发者都经历过。本文将深入讨论NoSuchBeanDefinitionException,包括异常概念,常见触发场景以及相应解决策略。具体内容以 JavaConfig 为例。
无命名 Bean 定义异常
此异常名言直译为 “找不到指定的 Bean 定义”,其 Java 文档说明了此异常在 spring 容器中找不到符合特定 bean 定义的情况被抛出。常见引起此异常的情况是 spring 管理的上下文中未能找到指定 Bean。下面我们将具体分析几种触发场景。
依赖注入时未找到 bean
在某个 BeanA 声明需要注入一个名为 BeanB 的 Bean 时,如果 spring 上下文中未定义 BeanB,就会抛出 NoSuchBeanDefinitionException。这种情况下,可能是 BeanB 未使用 spring 注解(如@Component、@Repository等)注释,或者对应的包未被 spring 扫描到。要解决这个问题,检查 BeanB 是否已标记为 spring bean,并确认对应的包是否已被包含在扫描范围内。
多个候选 bean
另一种常见情形是 spring 容器中存在多个类型相同但无法识别的候选 Bean,比如定义了两个实现 IBaneB 的类(BeanB1 和 BeanB2)。此时,依赖注入时没有具体指示,导致异常抛出。此时可通过附加 @Qualifier 注解来指定具体的候选 Bean,或者使用 @Primary 标记一个,spring 将选择它进行注入。
通过名称获取非存在 bean
若要通过名称获取一个尚未定义的 bean 也会引发 NoSuchBeanDefinitionException。确认所请求的名称对应的 bean 是否已经在 spring 上下文中定义。
代理 Bean 与实现
spring 的 AOP 机制借助代理提供功能扩展,其中代理类和目标类或实现类在实现或接口层次上的不同会导致异常。当使用接口进行依赖注入时,spring 容器能正常识别和管理。但使用真实的类进行注入时,容器可能会遇到问题,因为代理类并未继承或实现注入的类。在 spring 的事务管理场景中,通过接口注入可以避免此异常。
总结,解决 NoSuchBeanDefinitionException 需要从 spring 上下文的 bean 定义、扫描范围和注入方式着手,确保 spring 环境的配置与 bean 的定义完全吻合,合理使用 spring 的特性可以有效避免或解决这类异常。
SpringCloud原理OpenFeign之FeignClient动态代理生成原理
在SpringCloud框架中,OpenFeign组件提供了基于Java接口的HTTP客户端实现。本文将深入剖析OpenFeign中的FeignClient动态代理生成原理,从@EnableFeignClinets注解的作用、Feign客户端接口动态代理的生成源码剖析以及Feign动态代理构造过程总结三方面进行详细阐述。
首先,我们来分析@EnableFeignClinets注解的作用。这个注解实际上是整个Feign组件的入口,通过@Import注解导入FeignClientsRegistrar类,该类实现了ImportBeanDefinitionRegistrar接口,当Spring Boot启动时,会调用该类的registerBeanDefinitions方法动态注入bean到Spring容器中。其中,registerFeignClients方法负责扫描带有@FeignClient注解的类,并生成对应的BeanDefinition。
在Feign客户端接口动态代理的生成源码剖析部分,我们主要关注FeignAutoConfiguration和FeignClientsConfiguration配置类。FeignAutoConfiguration是Feign在整个SpringCloud中的配置类,其中会注入一系列FeignClientSpecification对象,并将其封装到FeignContext中,最后将FeignContext注入到Spring容器中。FeignContext是进行配置隔离的关键组件,它内部维护了每个客户端对应的AnnotationConfigApplicationContext、配置类的封装以及父容器等信息。通过这种方法,每个客户端的配置能够在独立的ApplicationContext中进行解析,实现了配置的隔离。
接着,我们深入解析NamedContextFactory的作用,它用于进行配置隔离,确保Ribbon和Feign的配置能够被独立管理。通过构建独立的ApplicationContext,每个客户端的配置能够在自己的上下文中进行解析,避免了配置冲突。此外,我们还会剖析FeignClientsConfiguration,这是一个默认配置类,其中包含了生成Feign客户端动态代理所需的各种bean,如解析SpringMVC注解的能力、构建动态代理的类等。
在构建动态代理的过程中,整个流程涉及多个关键步骤:扫描并生成BeanDefinition、注入FeignClientFactoryBean、获取代理对象等。具体而言,当@EnableFeignClinets注解生效时,会扫描所有带有@FeignClient注解的接口并生成对应的BeanDefinition。随后,通过FeignClientFactoryBean重新生成一个bean定义,注册到Spring容器中。当需要获取代理对象时,通过FeignClientFactoryBean的getObject方法调用getTarget(),进一步获取到代理对象。整个过程涉及Feign.Builder的配置、组件的获取以及最终通过Feign.Builder构建动态代理对象。
综上所述,OpenFeign在SpringCloud框架中的实现,通过一系列的注解、配置类以及组件的协作,实现了基于Java接口的HTTP客户端的动态代理生成。从@EnableFeignClinets的注解作用到Feign客户端接口的动态代理生成,再到Feign动态代理的构造过程,整个流程设计精巧,有效提高了服务间的互操作性和可维护性。对于希望深入理解OpenFeign原理的开发者而言,本文提供的分析和总结将有助于更好地掌握这一技术。
最后,尽管本文已经详细阐述了OpenFeign的动态代理生成原理,但对于Feign与Ribbon的整合以及其他SpringCloud组件的原理,未来将会有更多深入分析的文章。通过本文的总结,希望能为读者提供一个清晰的视角,以便在实际项目中灵活运用OpenFeign实现高效、稳定的远程调用。
springâAOPä¸äºå¡
title: springââAOPä¸äºå¡.mddate: -- ::
categories: [Spring]
tags: [AOP,äºå¡]
toc: true
å ååºæºç ä¸æ¯è¾éç¹çå 个类ï¼
1ã<aop:before method="before" pointcut-ref="myMethods"/>å è£ æä¸ä¸ªadvisor
2ãAspectJAwareAdvisorAutoProxyCreatorï¼å½å®ä¾åææbeané½ä¼æ§è¡å°AspectJAwareAdvisorAutoProxyCreatorç±»
å®ä¼æ£æµbeanæ¯å¦advisor以åadviceåå¨ï¼å¦ææ就说æè¿ä¸ªbeanæåé¢ï¼æåé¢é£ä¹å°±ä¼çæ代ç
3ãjdkç代çï¼beanéé¢çææadvisorå å ¥å°proxyFactoryã
4ãjdkDynamicProxy invokeï¼æ¿å°beanéé¢çææInterceptorï¼ä¼å¾ªç¯proxyFactoryéé¢çææadvisor
éé¢æadviceï¼éé¢çadviceæ两ç§ç±»åï¼è¦ä¹æ¯adviceï¼è¦ä¹æ¯MethodInterceptorç±»åç
5ãå½ä»£ç对象è°ç¨æ¹å¼ï¼æ¯ä¸ä¸ªMethodInterceptorç±»åçç±»çé¾å¼è°ç¨è¿ç¨ï¼ç´å°å®¹å¨ç大å°åç´¢å¼ä¸è´çæ¶åè°ç¨JoinPointç®æ æ¹æ³
beforeï¼this.advice.before(),invocation.processd();
è£ é åæ°ï¼åé¢éé¢beforeæ¹æ³çmethod对象ï¼method.getParamterTypes()[0]
æç»ä¼æadviceå°è£ æMethodInterceptorç±»åç对象
ç¨åºæ§è¡çæ个ç¹å®ä½ç½®ï¼å¦ç±»å¼å§åå§ååãç±»åå§ååãç±»æ个æ¹æ³è°ç¨åãè°ç¨åãæ¹æ³æåºå¼å¸¸åãä¸ä¸ªç±»æä¸æ®µç¨åºä»£ç æ¥æä¸äºå ·æè¾¹çæ§è´¨çç¹å®ç¹ï¼è¿äºç¹ä¸çç¹å®ç¹å°±ç§°ä¸ºâè¿æ¥ç¹âãSpringä» æ¯ææ¹æ³çè¿æ¥ç¹ï¼å³ä» è½å¨æ¹æ³è°ç¨åãæ¹æ³è°ç¨åãæ¹æ³æåºå¼å¸¸æ¶ä»¥åæ¹æ³è°ç¨ååè¿äºç¨åºæ§è¡ç¹ç»å ¥å¢å¼ºãè¿æ¥ç¹ç±ä¸¤ä¸ªä¿¡æ¯ç¡®å®ï¼ç¬¬ä¸æ¯ç¨æ¹æ³è¡¨ç¤ºçç¨åºæ§è¡ç¹ï¼ç¬¬äºæ¯ç¨ç¸å¯¹ç¹è¡¨ç¤ºçæ¹ä½ã
æ¯ä¸ªç¨åºç±»é½æ¥æå¤ä¸ªè¿æ¥ç¹ï¼å¦ä¸ä¸ªæ¥æ两个æ¹æ³çç±»ï¼è¿ä¸¤ä¸ªæ¹æ³é½æ¯è¿æ¥ç¹ï¼å³è¿æ¥ç¹æ¯ç¨åºç±»ä¸å®¢è§åå¨çäºç©ãAOPéè¿âåç¹âå®ä½ç¹å®çè¿æ¥ç¹ãè¿æ¥ç¹ç¸å½äºæ°æ®åºä¸çè®°å½ï¼èåç¹ç¸å½äºæ¥è¯¢æ¡ä»¶ãåç¹åè¿æ¥ç¹ä¸æ¯ä¸å¯¹ä¸çå ³ç³»ï¼ä¸ä¸ªåç¹å¯ä»¥å¹é å¤ä¸ªè¿æ¥ç¹ãå¨Springä¸ï¼åç¹éè¿org.springframework.aop.Pointcutæ¥å£è¿è¡æè¿°ï¼å®ä½¿ç¨ç±»åæ¹æ³ä½ä¸ºè¿æ¥ç¹çæ¥è¯¢æ¡ä»¶ï¼Spring AOPçè§å解æå¼æè´è´£åç¹æ设å®çæ¥è¯¢æ¡ä»¶ï¼æ¾å°å¯¹åºçè¿æ¥ç¹ãå ¶å®ç¡®åå°è¯´ï¼ä¸è½ç§°ä¹ä¸ºæ¥è¯¢è¿æ¥ç¹ï¼å 为è¿æ¥ç¹æ¯æ¹æ³æ§è¡åãæ§è¡åçå æ¬æ¹ä½ä¿¡æ¯çå ·ä½ç¨åºæ§è¡ç¹ï¼èåç¹åªå®ä½å°æ个æ¹æ³ä¸ï¼æ以å¦æå¸æå®ä½å°å ·ä½è¿æ¥ç¹ä¸ï¼è¿éè¦æä¾æ¹ä½ä¿¡æ¯ã
å¢å¼ºæ¯ç»å ¥å°ç®æ ç±»è¿æ¥ç¹ä¸çä¸æ®µç¨åºä»£ç ï¼å¨Springä¸ï¼å¢å¼ºé¤ç¨äºæè¿°ä¸æ®µç¨åºä»£ç å¤ï¼è¿æ¥æå¦ä¸ä¸ªåè¿æ¥ç¹ç¸å ³çä¿¡æ¯ï¼è¿ä¾¿æ¯æ§è¡ç¹çæ¹ä½ãç»åæ§è¡ç¹æ¹ä½ä¿¡æ¯ååç¹ä¿¡æ¯ï¼æ们就å¯ä»¥æ¾å°ç¹å®çè¿æ¥ç¹ã
å¢å¼ºé»è¾çç»å ¥ç®æ ç±»ãå¦æ没æAOPï¼ç®æ ä¸å¡ç±»éè¦èªå·±å®ç°ææé»è¾ï¼èå¨AOPç帮å©ä¸ï¼ç®æ ä¸å¡ç±»åªå®ç°é£äºé横åé»è¾çç¨åºé»è¾ï¼èæ§è½çè§åäºå¡ç®¡ççè¿äºæ¨ªåé»è¾åå¯ä»¥ä½¿ç¨AOPå¨æç»å ¥å°ç¹å®çè¿æ¥ç¹ä¸ã
å¼ä»æ¯ä¸ç§ç¹æ®çå¢å¼ºï¼å®ä¸ºç±»æ·»å ä¸äºå±æ§åæ¹æ³ãè¿æ ·ï¼å³ä½¿ä¸ä¸ªä¸å¡ç±»åæ¬æ²¡æå®ç°æ个æ¥å£ï¼éè¿AOPçå¼ä»åè½ï¼æ们å¯ä»¥å¨æå°ä¸ºè¯¥ä¸å¡ç±»æ·»å æ¥å£çå®ç°é»è¾ï¼è®©ä¸å¡ç±»æ为è¿ä¸ªæ¥å£çå®ç°ç±»ã
ç»å ¥æ¯å°å¢å¼ºæ·»å 对ç®æ ç±»å ·ä½è¿æ¥ç¹ä¸çè¿ç¨ãAOPåä¸å°ç»å¸æºï¼å°ç®æ ç±»ãå¢å¼ºæå¼ä»éè¿AOPè¿å°ç»å¸æºå¤©è¡£æ ç¼å°ç¼ç»å°ä¸èµ·ãæ ¹æ®ä¸åçå®ç°ææ¯ï¼AOPæä¸ç§ç»å ¥çæ¹å¼ï¼
aãç¼è¯æç»å ¥ï¼è¿è¦æ±ä½¿ç¨ç¹æ®çJavaç¼è¯å¨ã
bãç±»è£ è½½æç»å ¥ï¼è¿è¦æ±ä½¿ç¨ç¹æ®çç±»è£ è½½å¨ã
cãå¨æ代çç»å ¥ï¼å¨è¿è¡æ为ç®æ 类添å å¢å¼ºçæåç±»çæ¹å¼ã
Springéç¨å¨æ代çç»å ¥ï¼èAspectJéç¨ç¼è¯æç»å ¥åç±»è£ è½½æç»å ¥ã
ä¸ä¸ªç±»è¢«AOPç»å ¥å¢å¼ºåï¼å°±äº§åºäºä¸ä¸ªç»æç±»ï¼å®æ¯èåäºåç±»åå¢å¼ºé»è¾ç代çç±»ãæ ¹æ®ä¸åç代çæ¹å¼ï¼ä»£çç±»æ¢å¯è½æ¯ååç±»å ·æç¸åæ¥å£çç±»ï¼ä¹å¯è½å°±æ¯åç±»çåç±»ï¼æ以æ们å¯ä»¥éç¨è°ç¨åç±»ç¸åçæ¹å¼è°ç¨ä»£çç±»ã
åé¢ç±åç¹åå¢å¼ºï¼å¼ä»ï¼ç»æï¼å®æ¢å æ¬äºæ¨ªåé»è¾çå®ä¹ï¼ä¹å æ¬äºè¿æ¥ç¹çå®ä¹ï¼Spring AOPå°±æ¯è´è´£å®æ½åé¢çæ¡æ¶ï¼å®å°åé¢æå®ä¹ç横åé»è¾ç»å ¥å°åé¢ææå®çè¿æ¥ç¹ä¸ã
advisorï¼ pointCut advice
ä¸ç±»åè½çå¢å¼º
aroundæ¹æ³éé¢ä»£ç åé¢
äºå¡åé¢
ç¼ååé¢
æ¥å¿åé¢
äºå¡ï¼Transactionï¼ï¼ä¸è¬æ¯æè¦åçææåçäºæ ãå¨è®¡ç®æºæ¯è¯ä¸æ¯æ访é®å¹¶å¯è½æ´æ°æ°æ®åºä¸åç§æ°æ®é¡¹çä¸ä¸ªç¨åºæ§è¡åå (unit)ãæ¯æ°æ®åºæä½çæå°å·¥ä½åå ï¼æ¯ä½ä¸ºå个é»è¾å·¥ä½åå æ§è¡çä¸ç³»åæä½ï¼è¿äºæä½ä½ä¸ºä¸ä¸ªæ´ä½ä¸èµ·åç³»ç»æ交ï¼è¦ä¹é½æ§è¡ãè¦ä¹é½ä¸æ§è¡ï¼äºå¡æ¯ä¸ç»ä¸å¯ååå²çæä½éåï¼å·¥ä½é»è¾åå ï¼ã
大è´æµç¨å½¢å¦
æ°æ®åºäºå¡æ¥æå 大ç¹æ§ï¼
äºå¡çå大ç¹æ§ï¼
äºå¡æ¯æ°æ®åºçé»è¾å·¥ä½åä½ï¼äºå¡ä¸å å«çåæä½è¦ä¹é½åï¼è¦ä¹é½ä¸å
äº å¡æ§è¡çç»æå¿ é¡»æ¯ä½¿æ°æ®åºä»ä¸ä¸ªä¸è´æ§ç¶æåå°å¦ä¸ä¸ªä¸è´æ§ç¶æãå æ¤å½æ°æ®åºåªå å«æåäºå¡æ交çç»ææ¶ï¼å°±è¯´æ°æ®åºå¤äºä¸è´æ§ç¶æãå¦ææ°æ®åºç³»ç» è¿è¡ä¸åçæ éï¼æäºäºå¡å°æªå®æ就被迫ä¸æï¼è¿äºæªå®æäºå¡å¯¹æ°æ®åºæåçä¿®æ¹æä¸é¨åå·²åå ¥ç©çæ°æ®åºï¼è¿æ¶æ°æ®åºå°±å¤äºä¸ç§ä¸æ£ç¡®çç¶æï¼æè è¯´æ¯ ä¸ä¸è´çç¶æã
ä¸ä¸ªäºå¡çæ§è¡ä¸è½å ¶å®äºå¡å¹²æ°ãå³ä¸ä¸ªäºå¡å é¨çæä½å使ç¨çæ°æ®å¯¹å ¶å®å¹¶åäºå¡æ¯é离çï¼å¹¶åæ§è¡çå个äºå¡ä¹é´ä¸è½äºç¸å¹²æ°ã
ä¹ç§°æ°¸ä¹ æ§ï¼æä¸ä¸ªäºå¡ä¸æ¦æ交ï¼å®å¯¹æ°æ®åºä¸çæ°æ®çæ¹åå°±åºè¯¥æ¯æ°¸ä¹ æ§çãæ¥ä¸æ¥çå ¶å®æä½ææ éä¸åºè¯¥å¯¹å ¶æ§è¡ç»ææä»»ä½å½±åã
个人ç解ï¼äºå¡å¨Springä¸æ¯åå©AOPææ¯æ¥å®ç°çï¼å¯ä»¥ä½ä¸ºAOPä¸çä¸ä¸ªäºå¡åé¢ãspringæºç 对äºå¡çå¤çé»è¾ï¼èªå·±ç 究å§ï¼
ORMæ¡æ¶ä¸ä»¥Mybatis为ä¾ï¼äºå¡å¤çå°±æ¯ç¨å°äºä¸ä¸ªç±»Transactionï¼é¨åæºç å¦ä¸
å¯ä»¥çåºTransaction管ççå°±æ¯ä¸ä¸ªconnectionï¼èconnectionæ们å¾æ¸ æ¥æ¯ä¸ç¨æ·ä¼è¯æé©çã
é£ä¹å ³ç³»å°±æ¯Transaction 管çConnection ï¼èconnectionä¸ ç¨æ·sessionä¸å¯¹ä¸åå¨ã
å¨springBootä¸ï¼åªéè¦å å ¥POMå°±å¯ä»¥äºï¼é å注解使ç¨å³å¯ã
æ¥ä¸æ¥å°±æ¯äºå¡çæ§å¶äºã
é¦å äºå¡æå å¤§ä¼ æå±æ§ï¼
å ¶ä¸æ常è§çï¼ç¨å¾æå¤å°± PROPAGATION_REQUIREDãPROPAGATION_REQUIRES_NEWã PROPAGATION_NESTED è¿ä¸ç§ãäºå¡çä¼ æå±æ§æ¯ spring ç¹æçï¼æ¯ spring ç¨æ¥æ§å¶æ¹æ³äºå¡çä¸ç§æ段ï¼è¯´ç´ç½ç¹å°±æ¯ç¨æ¥æ§å¶æ¹æ³æ¯å¦ä½¿ç¨åä¸äºå¡çä¸ç§å±æ§ï¼ä»¥åæç §ä»ä¹è§ååæ»çä¸ç§æ段ã
ä¸é¢ç¨ä»£ç æ¼ç¤ºè¿ä¸ç§å±æ§çæºå¶ï¼
äºå¡çé»è®¤å±æ§å°±æ¯requiredï¼éè¿Transactional.javaä¸çPropagation propagation() default Propagation.REQUIRED; å¯ä»¥çåºã
è¿ç§æ åµå°±æ¯äºå¡1ï¼äºå¡2 é½å å ¥å°äºäºå¡0ä¸ãä¸ç®¡æ¯1ï¼2åªä¸ªäºå¡æåºå¼å¸¸ï¼äºå¡0é½ä¼åæ»ãæ°æ®æ·»å ä¼å¤±è´¥ã
è¿ç§æ åµå°±æ¯ï¼
äºå¡0ï¼requiredï¼ {
äºå¡1 ï¼REQUIRES_NEWï¼
äºå¡2
}
æ¤æ¶ã
æ åµaï¼
1ãå¦æåªæ¯äºå¡2åºç°äºå¼å¸¸ï¼é£ä¹äºå¡1ä¼æ交ï¼äºå¡2å å ¥å°äºå¡0ä¸ä¼åæ»ã
2ãå¦æåªæ¯äºå¡1åºç°äºå¼å¸¸ï¼é£ä¹äºå¡1ä¼åæ»ï¼åä¸å±äºå¡0æå¼å¸¸ï¼äºå¡2ä¼å å ¥å°äºå¡0ä¸ï¼è¿æ¶é½ä¼åæ»ã
æ åµbï¼
å¦æäºå¡1ï¼äºå¡2é½æ¯REQUIRES_NEWä¼ æå±æ§ãé£ä¹ç»æå°±æ¯ï¼
1ãå¦æäºå¡1ï¼æåºäºå¼å¸¸ï¼é£ä¹äºå¡2æ¯ä¸ä¼æ§è¡çï¼é£ä¹äºå¡0å¿ ç¶åæ»ã
2ãå¦æäºå¡2ï¼æåºå¼å¸¸ï¼é£ä¹äºå¡1ä¼æ交ï¼è¡¨ä¸ä¼ææ°æ®ãäºå¡2æå¼å¸¸åæ»å¹¶æåºï¼äºå¡0åæ»ã
NESTEDå±æ§å ¶å®å°±æ¯å建äºåæ»ç¹ï¼æå¼å¸¸æ¶ï¼ä¼åæ»å°æå®çåæ»ç¹ã
å¨è¿éè¿ä»£ç æµè¯ï¼åºç°ä¸ç§æ åµæ¯ï¼æ 论äºå¡1ï¼äºå¡2åªä¸ªæå¼å¸¸ï¼æ°æ®é½ä¸ä¼æå ¥æåï¼åå æ¯ï¼ä¸è®ºæ¯äºå¡1è¿æ¯äºå¡2é½ä¼åäºå¡0æåºå¼å¸¸ï¼äºå¡0æè·å°å¼å¸¸åï¼æ§è¡rollback()æ¹æ³ï¼è¿å°±æä½æäºï¼äºå¡çå ¨é¨åæ»ã
å¦ææ³è¦äºå¡1åäºå¡2 æ³è¦æ ¹æ®èªå·±çåæ»ç¹åæ»ï¼é£ä¹äºå¡0å¿ é¡»èªå·±å¤çå¼å¸¸ï¼ä¸è®©springæè·å°è¿ä¸ªå¼å¸¸ï¼é£ä¹å°±æ»¡è¶³äºãæ代ç æ¹æè¿ç§ï¼
Jack大佬æä¾äºï¼ä¼ªä»£ç åææ³ã
æç §Springæºç çäºå¡å¤çé»è¾ï¼ä¼ªä»£ç 大è´ä¸ºï¼
学习编程|Spring源码深度解析 读书笔记 第4章:bean的加载
在Spring框架中,bean的加载过程是一个精细且有序的过程。首先,当需要加载bean时,Spring会尝试通过转换beanName来识别目标对象,可能涉及到别名或FactoryBean的识别。
加载过程分为几步:从缓存查找单例,Spring容器内单例只创建一次,若缓存中无数据,会尝试从singletonFactories寻找。接着是bean的实例化,从缓存获取原始状态后,可能需要进一步处理以符合预期状态。
原型模式的依赖检查是单例模式特有的,用来避免循环依赖问题。然后,如果缓存中无数据,会检查parentBeanFactory,递归加载配置。BeanDefinition会被转换为RootBeanDefinition,合并父类属性,确保依赖的正确初始化。
Spring根据不同的scope策略创建bean,如singleton、prototype等。类型转换是后续步骤,可能将返回的bean转换为所需的类型。FactoryBean的使用提供了灵活的实例化逻辑,用户自定义创建bean的过程。
当bean为FactoryBean时,getBean()方法代理了FactoryBean的getObject(),允许通过不同的方式配置bean。缓存中获取单例时,会执行循环依赖检测和性能优化。最后,通过ObjectFactory实例singletonFactory定义bean的完整加载逻辑,包括回调方法用于处理单例创建前后的状态。