1.(含matlab完整源码)手搓16QAM调制解调系统
2.人工蜂群算法(Artificial Bee Colony,源码 ABC)MATALAB代码详细解析
3.matlab求1-10的阶乘的函数源程序及算法解释。
4.三维铁木辛柯梁Matlab有限元编程 | 弹簧支座 | 弹性支撑单元| Matlab源码 | 理论文本
(含matlab完整源码)手搓16QAM调制解调系统
在通信领域,编程QAM调制方式在OFDM系统中广泛应用,源码因其先进的编程调制特性。为深入理解QAM系统运行机制,源码我在理论学习之余,编程pos算法源码决定自行使用MATLAB编程实现从头至尾的源码QAM调制解调系统,以获得更为直观的编程感受和体验。
起初,源码我发现MATLAB库中提供了现成的编程qammod函数,使用几行代码即可轻松完成任务。源码然而,编程为了达到对系统运作过程的源码深入理解,我决定从零开始,编程亲手搭建QAM系统,源码从产生UNRZ波形、抢购界面源码串并转换,到星座图映射、QAM调制,最终过AWGN信道并解调,每一步都通过figure展示码元波形及调制前后的星座图,以利于学习。
整个MATLAB代码共行,详细内容请下拉查看。此项目旨在提供一个实用的参考案例,欢迎各位同行学习参考。
在编程过程中,我参考了多本专业书籍和博客,并在此对各位前辈表示诚挚的感谢。相关资源链接如下:[1][2][3]。理论与实践相结合,加工生产源码方能深刻理解技术。希望此项目能对大家的学习和工作有所启发。
人工蜂群算法(Artificial Bee Colony, ABC)MATALAB代码详细解析
本文章将对人工蜂群算法(Artificial Bee Colony, ABC)的MATLAB实现代码进行深入解析,帮助读者理解算法原理与实现细节。代码结构清晰,适合初学者学习。
人工蜂群算法是一种基于蜂群行为的优化算法,模拟了蜜蜂在寻找食物源时的探索、选择和利用资源的过程。其核心机制包括侦查蜂、工作蜂和领导者蜂,分别负责搜索、评价和更新解。
在MATLAB中,人工蜂群算法的海盗指标源码实现主要包括以下几部分:
1、`ABC.m`文件:这是算法的核心逻辑文件,包含算法的初始化、循环迭代、食物源搜索、评价和更新等关键步骤。代码中包含了对参数的设定、解的初始化以及算法流程的详细控制。
2、`Sphere.m`文件:这个文件用于实现目标函数(如Sphere函数),它是评价解优劣的依据。在实际应用中,用户需要根据问题定义替换此函数以适应不同优化场景。
3、`RouletteWheelSelection.m`文件:此文件负责实现选择操作,通过轮盘赌选择机制从当前种群中选择个体进行下一步操作。fox源码分析该文件中的逻辑确保了算法在探索与利用之间的平衡。
在`ABC.m`文件中,可以见到初始化过程、食物源搜索、评价解以及更新解的循环迭代。侦查蜂、工作蜂和领导者蜂的角色通过代码实现了,通过不断迭代优化解集,最终达到全局最优解。
为方便学习与实践,提供了一个包含完整注释的代码包:`人工蜂群算法MATLAB详细注释.zip`。这个包包含了上述所有的MATLAB源代码文件,以及一份详细的使用指南,帮助读者快速上手并进行实验。
通过本篇文章和附带的代码包,读者可以深入了解人工蜂群算法的工作原理和实现细节,掌握如何使用MATLAB进行该算法的实践应用。代码的注释详细,适合初学者理解算法逻辑,同时也是进阶学习者进行算法优化与创新的宝贵资源。
matlab求1-的阶乘的函数源程序及算法解释。
源程序代码以及算法解释如下:matlab求1-的阶乘的函数源码如下:
function p = factorial()
p=1;
for a=1:%设置要求的阶乘
for i=1:a%循环遍历从1到a
p=p*i;%遍历相乘
end;//函数结束
p%输出结果
p=1;%p还原其初始值
end
end
程序运行结果如下:
扩展资料:
C++实现求1到的阶乘之和,代码如下:
#include<stdio.h>
int main()
{
double a,b=1,sum=0;
for(a=1;a<=;a++)
{
b = a*b; /* 原理:1!等于1乘以1,2!等于1!乘以2,3!等于2!乘以3,以此类推 ,!等于9!乘以 */
sum = sum+b; /* 依次将1到的阶乘相加 */
}
printf("%lf\n",sum);
return 0;
}
同理,如果求一个已知整数Number1到另一个已知整数Number2的阶乘之和,只需在代码里做以下修改和替换:
#include<stdio.h>
int main()
{
double a,b=1,sum=0;
for(a=Number1;a<=Number2;a++) /* 在此处用具体的值替换Number1和Number2,如求到的阶乘之和,只需在此处用替换Number1,替换Number2 */
{
b = a*b;
sum = sum+b;
}
printf("%lf\n",sum);
return 0;
}
三维铁木辛柯梁Matlab有限元编程 | 弹簧支座 | 弹性支撑单元| Matlab源码 | 理论文本
本代码利用Matlab成功实现了三维铁木辛柯梁单元和弹性支撑单元的有限元编程。它基于Timoshenko梁理论,通过截面剪切系数来考虑梁截面的剪切变形影响。三维铁木辛柯梁单元由三个节点组成,形成一个直梁单元,具体示意图见图1-1。在这个单元中,o-xyz是梁单元的局部坐标系,节点i、j是单元的物理节点,用于确定单元的边界,这是必选节点。节点k是单元梁截面的主轴方向节点,用于确定梁截面主轴Z的方向,这是可选节点。如果不设置3号节点,梁的截面主轴将根据梁截面绕梁轴线的转角进行确认。三维铁木辛柯梁单元的每个节点包含六个位移自由度,包括沿单元局部坐标x、y、z轴的平动自由度u、v、w,以及绕单元局部坐标x、y、z轴的转动自由度。
使用本代码,你将获得三维铁木辛柯梁Matlab有限元程序源码以及程序理论文本doc文件。
获取地址为:三维铁木辛柯梁Matlab有限元编程 | 弹簧支座 | 弹性支撑单元| Matlab源码 | 理论文本
本程序实现的案例是列车轮轴的静力分析,将车轴简化如图2所示。轮对主轴被简化为圆截面的空间三维Timoshenko梁单元,如图4所示,车轮则被简化为轴承支撑单元。车轴是一个阶梯轴,根据截面大小的不同,被划分为几个不同截面面积的梁单元组合。为了得到轮轴过盈配合连接处精确的位移,在车轮车轴连接处建立了多个节点,连接处节点单元均使用轴承支撑单元,即弹性支撑单元。因此,本代码还涉及弹性支撑单元的有限元编程。