【安卓源码dump】【炒期货 源码】【《stl源码剖析】lenet源码

时间:2024-12-24 03:54:04 编辑:php 源码交友 来源:tcp服务器 源码

1.paddle掌握(一)paddle安装和入门
2.C++ 部署深度学习模型、STB进行图像预处理
3.pytorch中model、conv、linear、nn.Module和nn.optim模块参数方法一站式理解+finetune应用(上)

lenet源码

paddle掌握(一)paddle安装和入门

       首先,我们从安装PaddlePaddle开始。安卓源码dump官方推荐有深度学习开发经验且注重源代码和安全性的开发者使用,确保你的本地环境已安装CUDA和Anaconda。为了安装CUDA,你需要:

       1. 下载CUDA .7,可以从CUDA Toolkit Archive获取。

       2. 打开命令窗口,通过win+R运行管理器,输入`cmd`。

       3. 通过命令行查看CUDA版本。

       安装PaddlePaddle后,炒期货 源码我们来实现一个经典的深度学习入门项目——MNIST手写字符识别,这就像软件开发的“hello world”项目。LeNet模型将用于对MNIST数据集进行图像分类。MNIST数据集包含,个训练样本和,个测试样本,数据预处理已标准化,每张是x像素,值在0到1之间。获取数据集地址:yann.lecun.com/exdb/mnist。

       利用PaddlePaddle的`paddle.vision.datasets.MNIST`,我们可以加载数据并查看训练集中的一条数据,如`train_data0`的标签为[5]。

       接着,我们构建LeNet模型,使用`paddle.nn`中的函数如`Conv2D`、`MaxPool2D`和`Linear`。《stl源码剖析以下是模型构建的输出。

       模型训练和预测可以通过高层API实现,如`Model.fit`进行训练,`Model.evaluate`进行预测。基础API下,你需要构建训练数据加载器,定义训练函数,设置损失函数,按批处理数据,进行训练,并在训练后用测试数据验证模型效果。

C++ 部署深度学习模型、STB进行图像预处理

       在深入学习如何使用C++部署深度学习模型之后,我们首先回顾了前一篇文章的内容,其中主要介绍了如何使用训练得到的python script 源码权重文件导出静态图模型,以及如何使用C++调用模型完成实际部署的模拟。这一过程的详细步骤包括导出静态图模型的三个关键步骤,以及在前一章中提及的dump静态图方法。完成静态图导出后,我们进入了C++推理代码的编写阶段。推理代码的主逻辑简单且直接,其主要任务是实现模型的运行并产生预测结果。为了进行实际部署,我们还需要对代码进行编译,根据部署平台的不同,选择适当的编译方式,如x或进行交叉编译以适应如安卓等设备。同时,为了支持推理过程,需要配置相应的excel web源码环境,确保MegEngine Lite的库文件和stb头文件的可用性。具体步骤包括从源代码编译MegEngine,安装所有必要的依赖,使用cmake进行编译工程,以及将编译后生成的库文件放置在易于访问的目录中。为了便于集成stb库,只需将其头文件包含到项目内,并定义STB_IMAGE_IMPLEMENTATION以使用stbi_load()函数加载。

       完成编译后,我们得到了二进制文件inference,它包含了解析模型和执行推理的完整功能。在实际应用中,只需准备一张手写数字与模型位于同一目录下,并确保和模型的命名与代码中定义的一致,即可执行二进制文件并获取预测结果。这一过程展示了从模型导出、代码编写、编译部署到执行的完整链路,实现了LeNet神经网络在C++环境下的高效部署。

pytorch中model、conv、linear、nn.Module和nn.optim模块参数方法一站式理解+finetune应用(上)

       在深度学习编程初学者面对的挑战中,理解模型参数和方法是关键一步。本文将对PyTorch中的`model`, `conv`, `linear`, `nn.Module`和`nn.optim`模块的常见属性和方法进行深入解析,旨在消除疑惑,并提供清晰的理解路径。

       首先,`model(net)`代表模型类的一个实例对象,例如 `model(net) = LeNet(3)`,这里 `LeNet` 是网络类,而数字 `3` 代表类别数量。`LeNet` 类型可能由不同开发者实现,具体细节在后续章节中会详细讨论。`Module`, `Optimizer`, `Conv2d`, `Linear` 等类则继承自 `Module`,是构成模型的基本单元。

       模型类的初始化包含了8个有序字典,这些字典用于存储模型参数和结构。有序字典确保了数据的顺序性,而模型自身只直接使用 `self._parameters` 和 `self._modules` 这两个字典。

       关注的主要方法包括但不限于 `add_module()`, `get_parameter()`, `modules()`, `named_modules()` 和 `parameters()` 等。这些方法提供了获取模型结构、参数信息以及执行模型更新的能力。

       举例来说,构建一个简单的 `LeNet` 模型时,除了定义模型类自身和使用 `nn.Conv2d`, `nn.Linear` 等类外,这些对象都继承自 `Module` 类,因此它们都具备 `self._parameters` 和 `self._modules` 属性,以及一系列相关方法。

       在 `LeNet` 的上下文中,`model.conv1`, `model.fc1` 等层同样继承自 `Module`,它们各自拥有属性和方法,允许操作参数,如初始化 `model.conv1.weight` 使用凯明正态分布。

       模型的层可被替换或调整,例如将 `model.fc3` 替换为 `nn.Linear(model.fc2.out_features, class_num)`,用于调整分类器输出数量。这些操作是模型微调过程中的常见实践。

       解释清楚了模型参数的来源后,文章深入探讨了 `Conv2d` 和 `Linear` 类的参数和方法,这一部分的清晰理解有助于深入理解模型构建和参数操作。

       解决参数如何进入 `self._parameters` 和 `self._modules` 属性的疑问,涉及对魔术方法如 `__setattr__`、`__getattr__`、`__delattr__`、`__getattribute__` 和 `__dict__` 的理解,以及 `getattr()` 和 `dir()` 函数的作用。

       构建模型时,属性和参数会依次进入这些有序字典。以 `model.conv1 = nn.Conv2d(3, 6, 5)` 的过程为例,参数首先在 `Module` 类中存储,接着被注册到 `model` 实例的 `self._parameters` 中。若参数为 `Parameter` 类型,会进一步注册到该字典,以确保模型结构和参数的正确性。

       通过理解模型属性和方法的运作机制,开发者能够更高效地构建和调整深度学习模型,提升模型性能和适应性。

       以上内容为本文的主要部分,更多深入细节和源码剖析将在后续篇章中呈现。期待读者们继续探索,深化对深度学习模型构建的理解。

搜索关键词:用sourcetrail读源码