1.Դ?源码级뼶
2.[源码级解析] 巧妙解决并深度分析Linux下rm命令提示参数列表过长的问题
3.MySql轻松入门系列——第二站 使用visual studio 对mysql进行源码级调试
4.源码级低代码开发平台:JVS列表页数据处理与逻辑联动
5.大数据笔试真题集锦---第五章:Hive面试题
6.源码级解析,搞懂 React 动态加载(上) —— React Loadable
Դ?源码级뼶
源码级解析,探索 React 动态加载的源码级实现与特性
本系列文章旨在深入探讨单页应用(SPA)技术栈,重点关注动态加载方案的源码级实现原理。上篇中,源码级我们已介绍了 react-loadable 和 React.lazy,源码级赚钱任务悬赏源码其中后者几乎已覆盖所有使用场景,源码级并在 React 版本中添加了 SSR 支持。源码级今天,源码级我们将聚焦于一款名为 @loadable/component 的源码级新方案,探索其在动态加载领域的源码级独特优势与实现机制。
根据官方说明,源码级@loadable/component 不仅支持动态加载组件,源码级还扩展了 prefetch、源码级library 分割等特性,源码级并提供简洁的 API。它允许用户在不依赖其他高阶组件的情况下,直接动态加载组件或库。
为了直观理解动态加载的实现原理,我们先从具体例子入手。通过改造开头的例子,我们展示了如何使用 @loadable/component 实现组件动态加载。
接下来,我们将深入探讨动态加载组件与库之间的区别,以及如何利用 loadable 和 loadable.lib 函数实现动态加载。通过分析源码,我们发现核心逻辑在于使用 createLoadable 工厂方法,该方法根据不同的加载方式(loadable 和 lazy)生成高阶组件 Loadable。
分析 loadable 和 lazy 的实现区别后,我们发现它们在加载模块时的流程相似,但在加载组件时有所差异。动态加载的 ref 属性转发机制也是动态加载组件与库的重要特性之一,通过分析 Loadable 组件内部的实现细节,我们揭示了 ref 属性的指向原理。
在服务端渲染场景下,@loadable/component 的动态加载机制与客户端有所不同,主要通过同步加载动态组件/库来确保渲染过程的流畅性。通过构造函数中的同步加载操作,我们实现了服务端与浏览器端的加载一致,进而保证了渲染时可以获取到动态资源。
总结对比不同动态加载方案,w78源码React.lazy + Suspense 提供了强大的异步渲染控制能力,而 react-loadable 和 @loadable/component 则通过高阶组件的形式,实现了组件与库的动态加载。在选择动态加载方案时,应根据项目需求和具体场景进行评估,考虑到不同的特性和限制。
[源码级解析] 巧妙解决并深度分析Linux下rm命令提示参数列表过长的问题
在处理大型文件夹清理任务时,发现使用Linux下rm命令清理包含数百万文件的目录时,会遇到“参数列表过长”的提示问题。经过一系列的试验与深入研究内核源码,最终找到了巧妙的解决方案,并理解了Linux Shell的一些有趣特性。以下内容是对这一问题的详细解析与解决办法的记录。
最初,以为是rm命令对文件数量有特定限制,但尝试执行其他命令如ls和touch时也遇到相同问题,暗示问题可能与Shell的通配符使用有关。于是,通过管道功能,成功完成了清理任务。随后,通过使用find命令列出所有文件,并发现文件名格式包含日期和时间信息,导致在使用rm命令时,文件名被不当分割。为了解决这一问题,引入了-print0与-0参数,这样可以区分空格与分界符,正确解析包含空格的文件名。
吸取教训后,使用find命令配合-1参数,避免了递归操作,确保只删除文件而不删除目录,成功解决了第二次处理大量文件时的问题。紧接着,开始探索通配符长度限制的来源。通过实验,发现限制与Bash无关,而是Shell执行命令的本质。进一步研究得知,foobar如何源码输出Shell执行命令的过程涉及exec()类系统调用,且限制可能源自系统调用,而非Shell自身。深入分析源码后发现,最大参数长度限制为ARG_MAX,且其大小为栈空间的1/4。通过调整栈空间大小,可以增加允许的最大参数数量,从而解决“参数列表过长”的问题。
这一限制在许多现代操作系统中存在,不仅影响了Linux环境,也见于MacOS和Windows等系统。通过理解和调整相关配置,能够有效解决处理大型文件夹清理任务时遇到的“参数列表过长”问题,提升系统管理的效率与灵活性。
MySql轻松入门系列——第二站 使用visual studio 对mysql进行源码级调试
在探索MySQL世界的过程中,有些同学希望更深入地了解如何在Visual Studio中进行源码级调试。不用担心,让我们一步步来。必备工具
MySQL是用C++编写的,要在Windows上编译,需要几个关键工具:CMake用于生成可打开的解决方案,如MySQL.sln;Boost是强大的C++库,Bison是用于解析MySQL语法规则的工具;当然,选择适合自己版本的MySQL源码(如5.7.)也是必不可少的。详细安装步骤
安装过程需要细心,特别是Bison,务必避免默认路径中的空格问题,以免后续VS编译受阻。安装CMake和Bison时选择自定义路径,例如C:\2\GnuWin,确保它们的bin文件路径被添加到环境变量中。接下来解压mysql-5.7..zip,构建项目。编译与调试
使用CMake编译MySQL源码,当看到Build files written to: C:/2/mysql-5.7./brelease,说明成功生成.sln文件。用Visual Studio 打开MySql.Sln,耐心等待十几分钟,编译成功后即可进行下一步。炸金花源码下载启动MySQL并调试
首先,开启MySQL的调试模式,修改mysqld.cc中的test_lc_time_sz方法。然后,在Visual Studio的命令行参数中加入--console --initialize,开始调试。可能会遇到编码问题,解决后,输入默认密码zJDE>IC5o+ya,连接到MySQL并修改密码。追踪write_row
在上一篇中提到的write_row是一个虚方法,通过实际调试,我们可以看到它在ha_innodb.cc的实现。设置断点,执行insert操作,可以看到代码进入ha_innodb::write_row方法,深入查看局部变量和调用堆栈,验证之前的理论。总结
通过一整天的努力,我们掌握了在Visual Studio中对MySQL源码进行调试的技巧。记住,每一步都可能是个挑战,但只有亲自动手,才能真正理解MySQL的运作机制。希望这些经验能帮助你避免一些常见的坑,祝你在源码的世界里探索得更深入!源码级低代码开发平台:JVS列表页数据处理与逻辑联动
列表页作为数据管理的关键入口,其与逻辑的联动功能至关重要。让我们以按钮触发逻辑操作为例进行分析。按钮可以设计为触发不同场景的业务逻辑,针对列表页的数据进行修改。例如,列表页顶部的表级按钮可以对模型中的所有数据进行特定操作(如增加1),而行级按钮则可以执行针对每行数据的特定操作(如减少1),实现对数据模型的实时更新。
为了实现这样的功能,首先需要访问具备应用配置权限的用户界面,找到并进入列表页的设计界面。在设计界面中,通过鼠标操作找到并配置需要实现联动功能的android源码 截图流程按钮。
按钮配置通常包括其所在位置的选择(顶部或行内)以及是否使用逻辑引擎来驱动其操作。顶部按钮常用于执行列表级的操作,如新增、删除等;而行内按钮则聚焦于每行数据的操作,如修改、查看或删除。
配置按钮时,需选择调用自定义逻辑的选项,然后进入逻辑设计界面。设计逻辑时需要考虑数据的具体操作,比如使用行级按钮时,传递整行数据至逻辑处理,根据这些数据进行判断或计算。当触发表级数据修改时,利用逻辑的循环处理机制来遍历所有满足条件的数据,并对每个数据进行特定操作(如数量+1)。
整个设计流程中,逻辑的核心在于明确操作的目标(如更新数据模型)、设置合适的触发条件(如指定ID),以及在执行过程中实现具体的操作逻辑(如数值加减运算)。通过合理配置和使用逻辑工具,可以轻松实现列表页与后台逻辑的高效联动,提高数据管理的灵活性和效率。
为深入理解列表页与逻辑联动的应用实践,推荐查看相关教学资源,如“低代码开发重要工具:JVS列表页与表单配置全解析”、“告别单调的列表页,探索JVS低代码列表页设计的新思路”以及“这两个用低代码表单配置的应用场景,太实用了”等内容。通过学习与实践,您可以掌握更多低代码平台的高效应用技巧。
在线演示:frame.bctools.cn/
开源代码:gitee.com/software-mini...
大数据笔试真题集锦---第五章:Hive面试题
我会不间断地更新维护,希望对正在寻找大数据工作的朋友们有所帮助。 第五章目录 第五章 Hive 5.1 Hive 运行原理(源码级) 1.1 reduce端join 在reduce端,对两个表的数据分别标记tag,发送数据。根据分区分组规则获取相同key的数据,再根据tag进行join操作,完成实际连接。 1.2 map端join 将小表复制到每个map task的内存中,仅扫描大表,对大表中key在小表中存在时进行join操作。使用DistributedCache.addCacheFile设置小表,通过标准IO获取数据。 1.3 semi join 先将参与join的表1的key复制到表3中,复制多份到各map task,过滤不在新表3的表2数据,最后进行reduce。 5.2 Hive 建表5.3.1 传统方式建表
定义数据类型,如:TINYINT, STRING, TIMESTAMP, DECIMAL。 使用ARRAY, MAP, STRUCT结构。5.3.2 CTAS查询建表
创建表时指定表名、存储格式、数据来源查询语句。 缺点:默认数据类型范围限制。5.3.3 Like建表
通过复制已有表的结构来创建新表。5.4 存储格式和压缩格式
选择ORC+bzip/gzip作为源存储,ORC+Snappy作为中间存储。 分区表单文件不大采用gzip压缩,桶表使用bzip或lzo支持分片压缩。 设置压缩参数,如"orc.compress"="gzip"。5.5 内部表和外部表
外部表使用external关键字和指定HDFS目录创建。 内部表在创建时生成对应目录的文件夹,外部表以指定文件夹为数据源。 内部表删除时删除整个文件夹,外部表仅删除元数据。5.6 分区表和分桶表
分区表按分区字段拆分存储,避免全表查询,提高效率。 动态分区通过设置参数开启,根据字段值决定分区。 分桶表依据分桶字段hash值分组拆分数据。5.7 行转列和列转行
行转列使用split、explode、laterview,列转行使用concat_ws、collect_list/set。5.8 Hive时间函数
from_unixtime、unix_timestamp、to_date、month、weekofyear、quarter、trunc、current_date、date_add、date_sub、datediff。 时间戳支持转换和截断,标准格式为'yyyy-MM-dd HH:mm:ss'。 month函数基于标准格式截断,识别时截取前7位。5.9 Hive 排名函数
row_number、dense_rank、rank。5. Hive 分析函数:Ntile
效果:排序并分桶。 ntile(3) over(partition by A order by B)效果,可用于取前%数据统计。5. Hive 拉链表更新
实现方式和优化策略。5. Hive 排序
order by、order by limit、sort by、sort by limit的原理和应用场景。5. Hive 调优
减少distinct、优化map任务数量、并行度优化、小文件问题解决、存储格式和压缩格式设置。5. Hive和Hbase区别
Hive和Hbase的区别,Hive面向分析、高延迟、结构化,Hbase面向编程、低延迟、非结构化。5. 其他
用过的开窗函数、表join转换原理、sort by和order by的区别、交易表查询示例、登录用户数量查询、动态分区与静态分区的区别。源码级解析,搞懂 React 动态加载(上) —— React Loadable
本系列深入探讨SPA单页应用技术栈,首篇聚焦于React动态加载机制,解析当前流行方案的实现原理。
随着项目复杂度的提升和代码量的激增,如企业微信文档融合项目,代码量翻倍,性能和用户体验面临挑战。SPA的特性使得代码分割成为优化代码体积的关键策略。
code-splitting原理在于将大型bundle拆分为多个,实现按需加载和缓存,显著降低前端应用的加载体积。ES标准的import()函数提供动态加载支持,babel编译后,import将模块内容转换为ESM数据结构,通过promise返回,加载后在then中注册回调。
webpack检测到import()时,自动进行code-splitting,动态import的模块被打包到新bundle中。通过注释可自定义命名,如指定bar为动态加载bundle。
实现简易版动态加载方案,利用code-splitting和import,组件在渲染前加载,渲染完成前展示Loading状态,优化用户体验。然而,复杂场景如加载失败、未完成等需要额外处理。
引入React-loadable,动态加载任意模块的高阶组件,封装动态加载逻辑,支持多资源加载。通过传入参数如模块加载函数、Loading状态组件,统一处理动态加载成功与异常。
通过react-loadable改造组件,实现加载前渲染Loading状态,加载完成后更新组件。支持单资源或多资源Map动态加载,兼容多种场景。
Loadable核心是createLoadableComponent函数,采用策略模式,根据不同场景(单资源或多资源Map)加载模块。load方法封装加载状态与结果,loadMap方法加载多个loader,返回对象。
LoadableComponent高阶组件实现逻辑简单,通过注册加载完成与失败的回调,更新组件状态。默认渲染方法为React.createElement(),使用Loadable.Map时需显式传入渲染函数。
在服务端渲染(SSR)场景下,动态加载组件无法准确获取DOM结构,react-loadable提供解决方案,将异步加载转化为同步,支持SSR。
React loadable原始仓库不再维护,局限性体现在适用的webpack与babel版本、兼容性问题以及不支持现代React项目。针对此问题,@react-loadable/revised包提供基于Hooks与ts重构的解决方案。
React-loadable的实现原理与思路较为直观,下文将深入探讨React.lazy + Suspense的原生解决方案,理解Fiber架构中的动态加载,有助于掌握更深层次的知识。
Java 集合(3)-- Iterable接口源码级别详解
Iterable接口是Java集合框架中的顶级接口,通过实现此接口,集合对象能够提供迭代遍历每一个元素的能力。Iterable接口于JDK1.5版本推出,最初包含iterator()方法,规定了遍历集合内元素的标准。实现Iterable接口后,我们能够使用增强的for循环进行迭代。
Iterable接口内部定义了默认方法,如iterator()、forEach()、spliterator(),这些方法扩展了迭代和并行遍历的灵活性和效率。iterator()方法用于获取迭代器,而forEach()方法允许将操作作为参数传递,实现对每个元素的处理。spliterator()方法则是为了支持并行遍历数据元素而设计,返回的是专门用于并行遍历的迭代器。
在Java 8中,forEach()方法的参数类型是java.util.function.Consumer,即消费行为接口,可以自定义动作处理元素。默认情况下,如果未自定义动作,迭代顺序与元素顺序保持一致。尝试分割迭代器(trySplit())可以在多线程环境中实现更高效的并行计算,虽然实际分割不总是完全平均,但能有效提升性能。
Iterable接口的实现确保了快速失败机制,即在遍历过程中删除或添加元素会抛出异常,以确保数据一致性。这种方法虽然限制了某些操作,但维护了集合数据的稳定性和可靠性。
总结而言,Iterable接口作为集合顶级接口,定义了迭代遍历的基本规范,通过实现此接口,集合类获得了迭代遍历的能力。它支持的默认方法如iterator()、forEach()和spliterator(),使得Java集合框架在迭代和并行处理方面更加灵活和高效。