信息技术编程软件推荐 电脑锣编程入门最好用啥软件
信息技术编程软件?1.Microsoft Visual C++
这是源码由全球三大信息公司之一的微软公司推出的一款免费C++开发工具,并且集成了便利的源码除错工具,和微软Windows视窗操作系统应用程序接口、源码三维动画DirectX API、源码Microsift.NET框架,源码因软件的源码购物商场 源码自动完成功能和语法高亮的功能而著称。
2.Microsoft Visual Studio
这也是源码被世界强公司之一的微软公司推出的最流行的Windows平台应用程序的集成开发环境之一,是源码一个基本完整的开发工具集,内部集成了UML工具、源码代码管控工具、源码集成开发环境等软件生命周期所需要的源码大部分工具。
3.EcliPSe
这是源码一个基于Java的可扩展开发平台开放源代码的编程软件,很多用户喜欢将Eclipse当作Java集成开发环境(IDE)来使用,源码而这款软件还包括针对希望扩展Eclipse的源码软件开发人员的插件开发环境。
十大编程软件排行榜(编程软件有哪些推荐)
4.Dev-C++
这款软件是源码拥有功能简介、技巧提示和支持多语言等众多优点,是在Windows环境下适合初学者使用的一款轻量级C、C++集成开发环境,是一款遵守GPL许可协议分发源代码,集合众多自由软件的编程软件。
5.Notepad++
这款软件是被誉为程序员必备的应用Notepad++是Windows操作系统下的一款免费文本编辑器,支持多国语言编写功能,于Notepad相比这款功能更加强大,且支持数十种计算机程序语言。
6.MyEclipse
这款软件是以Eclipse为基础加入发出的一款企业级集成开发环境,是主要用于Java、Java EE以及移动应用的开发的十大编程工具之一,而其配合着CodeMix的使用支持也十分广泛。
7.JDK
JDK是由Sun Microsystems开发的一款java编程软件,分为多个版本,easyui代码生成器源码可应用于移动和嵌入式设备,自JAVA语言推出以来,JDK就成为使用最广泛的编程软件,而被很多认可就代表着学号JDK是学好Java的第一步。
8.Code::Blocks
这款软件是集开放源码、免费和全功能于一体的跨平台C、C++集成开发环境于一体,使用了著名的图形界面库wxWidgets(3.x)版,是热门C语言编程软件,支持工程管理、项目构建、代码完成等各种功能。
9.Gcc
这款软件是由GNU开发的包含了C、C++、Objective-C、Fortran、Java、Ada和Go语言前端的编程语言翻译器,现在已经成为大多数类Unix操作系统采纳为标准的编译器,支持多种计算机体系结构芯片。
.Sublime Text
这款软件是收费制的现金代码编辑器软件,是一款拥有漂亮用户界面和强大功能的跨平台文本编辑器,支持多种编程语言并拥有优秀代码自动完成功能并支持VIM模式的编程软件,软件还具有良好的扩展能力和完全开放的用户自定义设置。
电脑锣编程入门最好用啥软件?
C语言编程软件有哪些。
Mcrosoft Visual C++ 、Microsoft Visual Studio、 DEV C++、Code::Blocks、易语言逆战透视源码Borland C++、WaTCom C++、Borland C++ Builder、GNU DJGPP C++、Lccwin C Compiler3.1、High C、Turb C、gcc、C-Free和Win-TC、My Tc等等,由于C语言比较成熟,所以编程环境很多。
2.C语言入门,不推荐使用VC,因为VC不但庞大,而且应用开发比较高级。入门编程荐使用Dev-C 和 WIN-TC。
1)WIN-TC,该软件使用TC2为内核,提供WINDOWS平台的开发界面,因此也就支持WINDOWS平台下的功能,例如剪切、复制、粘贴和查找替换等。而且在功能上也有它的独特特色例如语法加亮、C内嵌汇编、自定义扩展库的支持等。并提供一组相关辅助工具令你在编程过程中更加游刃有余。
2)Dev-C ,微信多级分销系统源码Dev-C 是一个Windows下的C和C 程序的集成开发环境。它使用MingW/GCC编译器,遵循C/C 标准。开发环境包括多页面窗口、工程编辑器以及调试器等,在工程编辑器中集合了编辑器、编译器、连接程序和执行程序,提供高亮度语法显示的,以减少编辑错误,还有完善的调试功能,能够适合初学者与编程高手的不同需求,是学习C或C的首选开发工具。
适合孩子学习的编程软件有哪些?
偏门的软件就不说了,说主流的:
偏软件编程
这类型主要以入门引导为主,代表的编程软件有大名鼎鼎的Scratch,基于Scratch,孩子可以通过简单的图形积木编程,实现一些交互式动画、游戏和应用。孩子如果在小学阶段,比较适合用Scratch,有很多学校也有这个课程。现在是Scratch 3.0版本,功能更强了,也支持了乐高ev3、micro:bit等一些硬件,大家学的时候就不要买到2.0的书了。
还有国外的微信积分商城系统源码code.org平台,这个平台提供了图形编程和代码编程的很多课程和在线工具,有万的学生在这个平台学习过,从4岁开始就有课程,非常适合孩子们入手,还值得一提的是他提供中文界面,一些视频虽然没有中文,但是也是简单易懂,顺便还能练练英语。
最近几年国家宣传人工智能,浙江和山东高考有python,所以导致Python比较热起来。这个属于真正的计算机编程语言,所以只要是python编程工具都是可以的。最好的当然是用pycharm来做,但是如果是入门,个人建议用mu-editor,他是针对入门的学生做的编程工具,里面提供了对python、pygame zero、micro:bit、micropython的支持,可以说一个编程工具包含了大部分代码级编程入门教具支持了。
如果孩子的能力稍强,年龄也大一些,谷歌和mit一起研发的app inventor可以尝试用用,这个应用可以用来开发android手机应用。
偏硬件编程
典型的有Arduino编程,还有Micro:Bit编程,其中Micro:Bit编程最近几年非常火热,因为比Arduino更简单,更有利于孩子的入门学习。如果孩子是没接触过编程的,可以先从Micro:Bit入门,然后根据兴趣再扩展到Arduino创客及机器人编程。
Arduino可以用官方的软件进行编程,不过这个都是代码级编程,国内有北师大的mixly软件,这个软件可以用图形积木编程,大大降低了孩子学习难度,非常推荐大家来用。
Micro:Bit官方的平台works等设计专门用于图像相似性任务的神经网络,将推动领域发展。
SIFT算法原理与源码分析
SIFT算法的精密解析:关键步骤与核心原理
1. 准备阶段:特征提取与描述符生成 在SIFT算法中,首先对box.png和box_in_scene.png两张图像进行关键点检测。利用Python的pysift库,通过一系列精细步骤,我们从灰度图像中提取出关键点,并生成稳定的描述符,以确保在不同尺度和角度下依然具有较高的匹配性。 2. 高斯金字塔构建计算基础图像的高斯模糊,sigma值选择1.6,先放大2倍,确保模糊程度适中。
通过连续应用高斯滤波,构建高斯金字塔,每层图像由模糊和下采样组合而成,每组octave包含5张图像,从底层开始,逐渐减小尺度。
3. 极值点检测与极值点定位在高斯差分金字塔中寻找潜在的兴趣点,利用邻域定义,选择尺度空间中的极值点,这些点具有旋转不变性和稳定性。
使用quadratic fit细化极值点位置,确保匹配点的精度。
4. 特征描述与方向计算从细化的位置计算关键点方向,通过梯度方向和大小统计直方图,确定主次方向,以增强描述符的旋转不变性。
通过描述符生成过程,旋转图像以匹配关键点梯度与x轴,划分x格子并加权叠加,生成维的SIFT特征描述符。
5. 精度校验与匹配处理利用FLANN进行k近邻搜索,执行Lowe's ratio test筛选匹配点,确保足够的匹配数。
执行RANSAC方法估计模板与场景之间的homography,实现3D视角变化适应。
在场景图像上标注检测到的模板并标识SIFT匹配点。
SIFT的独特性:它提供了尺度不变、角度不变以及在一定程度上抵抗3D视角变化的特征,是计算机视觉领域中重要的特征检测和描述算法。求一份计算机本科的毕业设计,题目只要计算机类的就可以
计算机毕业设计
基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码
基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据
基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件
基于C++的即时通信软件设计 毕业论文+项目源码
基于JavaWeb+MySQL的图书管理系统 课程报告+项目源码及数据库文件
基于Android Studio+Android SDK的手机通讯录管理软件设计 课程报告+项目源码
基于JSP+MySQL的校园网上订餐系统 毕业论文+项目源码及数据库文件
基于AndroidStudio的花艺分享平台APP设计 报告+源码及APK文件
基于Python的酒店评论情感分析 课程报告+答辩PPT+项目源码
基于QT的教务选课管理系统设计与实现 毕业论文+项目源码
基于Android+Springboot+Mybatis+Mysql的个人生活APP设计 说明书+项目源码
基于Vue.js+Go的Web3D宇宙空间数据可视化系统 设计报告+前后端源码及数据
基于java+android+SQLite的保健型果饮在线销售APP设计 毕业论文+源码数据库及APK文件
基于Vue.js+SpringBoot+MyBatis+MySQL的高校综合资源发布分享社交二手平台 毕业论文+项目源码及数据库文件+演示视频
基于Delphi+MySQL的大学生竞赛发布及组队系统 设计报告+源码数据库及可执行文件+使用说明书
基于Android的名片信息管理系统设计与实现 毕业论文+任务书+外文翻译及原文+演示视频+项目源码
基于Python的**数据可视化分析系统 设计报告+答辩PPT+项目源码
基于JavaWeb的企业公司管理系统设计与实现 毕业论文+答辩PPT+演示视频+项目源码
高校成绩管理数据库系统的设计与实现 毕业论文+项目源码
基于JavaWeb的家庭食谱管理系统设计与实现 毕业论文+项目源码及数据库文件
基于Python+SQLSERVER的快递业务管理系统的设计与实现 毕业论文+项目源码及数据库文件
基于Python的语音词频提取云平台 设计报告+设计源码
在推荐系统中引入 Serendipity 的算法研究 毕业论文+参考文献+项目源码
基于Html+Python+Django+Sqlite的机票预订系统 毕业论文+项目源码及数据库文件
基于Python的卷积神经网络的猫狗图像识别系统 课程报告+项目源码
基于C++的云安全主动防御系统客户端服务端设计 毕业论文+项目源码
基于JavaSSM的学生成绩管理APP系统设计与实现 毕业论文+答辩PPT+前后台源码及APK文件
基于JavaSwing+MySQL的清朝古代名人数据管理系统设计 毕业论文+任务书+项目源码及数据库文件
基于Python_Django的社会实践活动管理系统设计与实现 毕业论文
基于Servlet WebSocket MySQL实现的网络在线考试系统 毕业论文+项目源码
基于JavaWEB+MySQL的学生成绩综合管理系统 毕业论文+项目源码及数据库文件
基于SpringBoot+Vue和MySQL+Redis的网络课程平台设计与实现 毕业论文+任务书+开题报告+中期报告+初稿+前后台项目源码
基于Java的毕业设计题目收集系统 课程报告+项目源码
基于Java+Python+html的生产者与消费者算法模拟 毕业论文+任务书+项目源码
基于JavaWeb+MySQL的学院党费缴费系统 毕业论文+项目源码及数据库文件
基于Java+MySQL的学生成绩管理系统 毕业论文+任务书+答辩PPT+项目源码及数据库文件
基于Java+MySQL的学生和客户信息管理系统 课程报告+项目源码及数据库文件
基于Java的长整数加减法算法设计 毕业论文+项目源码
基于vue+MySQL的毕业设计网上选题系统 毕业论文+项目源码
基于背景建模和FasterR-CNN的视频前景和目标检测 毕业论文+答辩PPT+项目源码
基于Python的智能视频分析之人数统计的多种实现 毕业论文+答辩PPT+项目源码
基于C#+SQL server的校园卡消费信息管理系统 毕业论文+项目源码及数据库文件
(四十三)特征点检测-LBP
时间为友,记录点滴。
特征点检测领域并非只有一种算法,大神们总能带来新颖的想法。虽然不可能掌握所有算法,但有些思路是值得借鉴的。
比如SIFT就是一个宝库,总能给我们带来启发。
既然已经了解了Harris、SIFT、FAST等特征检测算法,以及特征点的定义和评判标准,那么我们就来探讨LBP如何在特征检测领域脱颖而出。
思考一下特征点的优良性质:
什么是LBP?
LBP(Local Binary Pattern,局部二值模式)是一种描述图像局部纹理特征的算子,它具有旋转不变性和灰度不变性等显著优点。由T. Ojala、M. Pietikäinen和D. Harwood在年提出,用于纹理特征提取。它提取的是图像的局部纹理特征;
它是如何实现的?
首先谈谈原始LBP算子:
通过比较3*3邻域内的8个点,可以得到8位二进制数(通常转换为十进制数即LBP码,共种,即2 Byte),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。
虽然简单,但略显简陋(是不是与FAST算子有些类似)。这个LBP算子显然不能表示优良特征点,还好它出现的早(),所以后人对LBP做了很多优化,使其满足尺度不变、旋转不变、光照不变。
尺度不变:
无论是SIFT还是ORB,要做到尺度不变,我们通常采用金字塔扩展到多尺度空间,但LBP有它独特的方法。
在原始的LBP中,我们选择的是以目标点为中心,3x3的8邻域,经历过FAST的我们很容易想到半径的概念。那么3x3代表的就是以目标点为圆心,半径为1的邻域,如果我们把半径扩展一下会怎么样呢?
Ojala等人对LBP算子进行了改进,将3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的LBP算子允许在半径为R的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子;
这种情况下,对应黑点像素可能不是整数,要得到该点准确的像素值,必须对该点进行插值计算才能得到该点像素值,常见的插值方式为双线性插值或者立方插值。
这种思路有点像“山不转,水转;水不转,人转”;
旋转不变性:
Maenpaa等人又将LBP算子进行了扩展,提出了具有旋转不变性的LBP算子,即不断旋转圆形邻域得到一系列初始定义的LBP值,取其最小值作为该邻域的LBP值。
举一个具体的例子:下图所示的8种LBP模式,经过旋转不变的处理,最终得到的具有旋转不变性的LBP值为。也就是说,图中的8种LBP模式对应的旋转不变的LBP模式都是。
光照不变:
从LBP的差值计算可以看出,LBP本身就具有光照不变的特性(灰度值按比例缩放,强者恒强),但是我们可以引入权重概念,计算LBP码和对比度。
好了,LBP就这么多。是不是感觉SIFT/ORB后什么都简单了些?
在网上搜了个Python实现的LBP,实验了下,贴在这里:
Python
惯例,OpenCV早就给我们提供了LBP的算子,而且可以结合FaceDetect来用,
C++
1、lbpcascade_frontalface_improved文件我使用的是我们自己编译出来的,在Binfile\install\etc\lbpcascades目录下(你可以用everything搜索一下,OpenCV源码中也有提供) 2、今天我们首次使用了CascadeClassifier,这个我觉得有必要在后面详细解释一下。用OpenCV做人脸检测简直简单得不要不要的。
2025-01-24 08:12
2025-01-24 07:38
2025-01-24 06:49
2025-01-24 06:12
2025-01-24 05:41