本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【虚幻 源码】【groovy源码的意义】【筹码波段趋势源码】icaller 源码

2024-11-18 21:50:58 来源:知识 分类:知识

1.icaller Դ??
2.在线等啊,有人出过这个问题没有 java.lang.IllegalStateException: Broadcast already finished
3.pyc文件是怎么创建的?

icaller 源码

icaller Դ??

       深入探讨OpenHarmony代码学习中关于Ability子系统的源码解析,重点关注基于monthly_的代码架构与配置。

       在源码解析中,SystemAbility的配置sa_profile至关重要,它确保了以c++实现的虚幻 源码SA在加载注册逻辑时能够完成SA的注册,反之,未配置profile的System Ability将不会完成注册。可见abilitymgr等系统服务SA以特定方式运行,如.xml所示,ams的libabilityms.z.so在foundation进程中启动,并在启动后即向samgr组件注册SystemAbility,实现本地跨IPC访问。

       进一步,分析AbilityManagerService作为SystemAbility的管理器,提供管理Ability生命周期的管理能力。以AbilityManagerService::StartAbility为起点,此方法支持4种Startability,其中IRemoteObject属于分布式软总线子系统的ipc组件,负责进程间通信。理解IPC与RPC机制,IPC与RPC在实现跨进程通信中扮演重要角色,IPC使用Binder驱动,适合设备内跨进程通信,而RPC采用软总线驱动,适用于跨设备跨进程通信。groovy源码的意义客户端与服务器通过客户端-服务器模型进行通信,通过代理获取服务提供方的接口进行数据交互。三方应用通过FA提供的接口绑定服务提供方的Ability,获取代理,实现通信。

       在StartAbility中,callerToken由AbilityRuntime::AbilityContextImpl::StartAbility传入的AbilityContextImpl成员变量token_决定,通常指要启动的Ability。此调用链将在后续应用启动流程中总结,具体路径可参考官网介绍。

       继续深入代码分析,观察StartAbility中的调用链,最终向BMS调用StartAbilityInner方法。根据ability类型的不同,启动方式也不同,已在代码段中进行了标注。在OpenHarmony代码学习中,PageAbility作为具备ArkUI实现的Ability,是最具直观性的用户可见并可交互的实例,通常由missionListManager启动。

在线等啊,有人出过这个问题没有 java.lang.IllegalStateException: Broadcast already finished

       查看源码:链接如下:

       androiddocs/src/trunk/core/java/android/content/BroadcastReceiver.java

        public void sendFinished(IActivityManager am) {

        synchronized (this) {

        if (mFinished) {

        throw new IllegalStateException("Broadcast already finished");

        }

        mFinished = true;

       估计是重复调用finish方法去结束广播,第二次调用就会抛这个错,你不能关闭两次。

pyc文件是筹码波段趋势源码怎么创建的?

       pyc文件的触发

       前面我们提到,每一个代码块(code block)都会对应一个PyCodeObject对象,Python会将该对象存储在pyc文件中。但不幸的是,事实并不总是这样。有时,当我们运行一个简单的程序时并没有产生pyc文件,因此我们猜测:有些Python程序只是临时完成一些琐碎的工作,这样的程序仅仅只会运行一次,然后就不会再使用了,因此也就没有保存至pyc文件的必要。

       如果我们在代码中加上了一个import abc这样的语句,再执行你就会发现Python为其生成了pyc文件,这就说明import会触发pyc的生成。

       实际上,在运行过程中,如果碰到import abc这样的语句,那么Python会在设定好的path中寻找abc.pyc或者abc.pyd文件。如果没有这些文件,而是只发现了abc.py,那么Python会先将abc.py编译成PyCodeObject,然后创建pyc文件,并将PyCodeObject写到pyc文件里面去。

       接下来,再对abc.pyc进行import动作,对,php linux 源码安装并不是编译成PyCodeObject对象之后就直接使用。而是先写到pyc文件里面去,然后再将pyc文件里面的PyCodeObject对象重新在内存中复制出来。

       关于Python的import机制,我们后面会剖析,这里只是用来完成pyc文件的触发。当然得到pyc文件还有其它方法,比如使用py_compile模块。

#a.pyclassA:a=1#b.pyimporta

       执行b.py的时候,会发现创建了a.cpython-.pyc。另外关于pyc文件的创建位置,会在当前文件的同级目录下的__pycache__目录中创建,名字就叫做:py文件名.cpython-版本号.pyc。

pyc文件里面包含哪些内容

       上面我们提到,Python通过import module进行加载时,如果没有找到相应的pyc或者pyd文件,就会在py文件的基础上自动创建pyc文件。而创建之后,会往里面写入三个内容:

       1. magic number

       这是Python定义的一个整数值,不同版本的Python会定义不同的magic number,这个值是为了保证Python能够加载正确的pyc。

       比如Python3.7不会加载3.6版本的pyc,因为Python在加载pyc文件的时候会首先检测该pyc的magic number,如果和自身的magic number不一致,则拒绝加载。润泽金线源码

       2. pyc的创建时间

       这个很好理解,判断源代码的最后修改时间和pyc文件的创建时间。如果pyc文件的创建时间比源代码的修改时间要早,说明在生成pyc之后,源代码被修改了,那么会重新编译并生成新的pyc,而反之则会直接加载已存在的pyc。

       3. PyCodeObject对象

       这个不用说了,肯定是要存储的。

pyc文件的写入

       下面就来看看pyc文件是如何写入上面三个内容的。

       既然要写入,那么肯定要有文件句柄,我们来看看:

//位置:Python/marshal.c//FILE是C自带的文件句柄//可以把WFILE看成是FILE的包装typedefstruct{ FILE*fp;//文件句柄//下面的字段在写入信息的时候会看到interror;intdepth;PyObject*str;char*ptr;char*end;char*buf;_Py_hashtable_t*hashtable;intversion;}WFILE;

       首先是写入magic number和创建时间,它们会调用PyMarshal_WriteLongToFile函数进行写入:

voidPyMarshal_WriteLongToFile(longx,FILE*fp,intversion){ //magicnumber和创建时间,只是一个整数//在写入的时候,使用char[4]来保存charbuf[4];//声明一个WFILE类型变量wfWFILEwf;//内存初始化memset(&wf,0,sizeof(wf));//初始化内部成员wf.fp=fp;wf.ptr=wf.buf=buf;wf.end=wf.ptr+sizeof(buf);wf.error=WFERR_OK;wf.version=version;//调用w_long将x、也就是版本信息或者时间写到wf里面去w_long(x,&wf);//刷到磁盘上w_flush(&wf);}

       所以该函数只是初始化了一个WFILE对象,真正写入则是调用的w_long。

staticvoidw_long(longx,WFILE*p){ w_byte((char)(x&0xff),p);w_byte((char)((x>>8)&0xff),p);w_byte((char)((x>>)&0xff),p);w_byte((char)((x>>)&0xff),p);}

       w_long则是调用 w_byte 将 x 逐个字节地写到文件里面去。

       而写入PyCodeObject对象则是调用了PyMarshal_WriteObjectToFile,我们也来看看长什么样子。

voidPyMarshal_WriteObjectToFile(PyObject*x,FILE*fp,intversion){ charbuf[BUFSIZ];WFILEwf;memset(&wf,0,sizeof(wf));wf.fp=fp;wf.ptr=wf.buf=buf;wf.end=wf.ptr+sizeof(buf);wf.error=WFERR_OK;wf.version=version;if(w_init_refs(&wf,version))return;/*callermushcheckPyErr_Occurred()*/w_object(x,&wf);w_clear_refs(&wf);w_flush(&wf);}

       可以看到和PyMarshal_WriteLongToFile基本是类似的,只不过在实际写入的时候,PyMarshal_WriteLongToFile调用的是w_long,而PyMarshal_WriteObjectToFile调用的是w_object。

staticvoidw_object(PyObject*v,WFILE*p){ charflag='\0';p->depth++;if(p->depth>MAX_MARSHAL_STACK_DEPTH){ p->error=WFERR_NESTEDTOODEEP;}elseif(v==NULL){ w_byte(TYPE_NULL,p);}elseif(v==Py_None){ w_byte(TYPE_NONE,p);}elseif(v==PyExc_StopIteration){ w_byte(TYPE_STOPITER,p);}elseif(v==Py_Ellipsis){ w_byte(TYPE_ELLIPSIS,p);}elseif(v==Py_False){ w_byte(TYPE_FALSE,p);}elseif(v==Py_True){ w_byte(TYPE_TRUE,p);}elseif(!w_ref(v,&flag,p))w_complex_object(v,flag,p);p->depth--;}

       可以看到本质上还是调用了w_byte,但这仅仅是一些特殊的对象。如果是列表、字典之类的数据,那么会调用w_complex_object,也就是代码中的最后一个else if分支。

       w_complex_object这个函数的源代码很长,我们看一下整体结构,具体逻辑就不贴了,我们后面会单独截取一部分进行分析。

staticvoidw_complex_object(PyObject*v,charflag,WFILE*p){ Py_ssize_ti,n;//如果是整数的话,执行整数的写入逻辑if(PyLong_CheckExact(v)){ //......}//如果是浮点数的话,执行浮点数的写入逻辑elseif(PyFloat_CheckExact(v)){ if(p->version>1){ //......}else{ //......}}//如果是复数的话,执行复数的写入逻辑elseif(PyComplex_CheckExact(v)){ if(p->version>1){ //......}else{ //......}}//如果是字节序列的话,执行字节序列的写入逻辑elseif(PyBytes_CheckExact(v)){ //......}//如果是字符串的话,执行字符串的写入逻辑elseif(PyUnicode_CheckExact(v)){ if(p->version>=4&&PyUnicode_IS_ASCII(v)){ //......}else{ //......}}else{ //......}}//如果是元组的话,执行元组的写入逻辑elseif(PyTuple_CheckExact(v)){ //......}//如果是列表的话,执行列表的写入逻辑elseif(PyList_CheckExact(v)){ //......}//如果是字典的话,执行字典的写入逻辑elseif(PyDict_CheckExact(v)){ //......}//如果是集合的话,执行集合的写入逻辑elseif(PyAnySet_CheckExact(v)){ //......}//如果是PyCodeObject对象的话//执行PyCodeObject对象的写入逻辑elseif(PyCode_Check(v)){ //......}//如果是Buffer的话,执行Buffer的写入逻辑elseif(PyObject_CheckBuffer(v)){ //......}else{ W_TYPE(TYPE_UNKNOWN,p);p->error=WFERR_UNMARSHALLABLE;}}

       源代码虽然长,但是逻辑非常单纯,就是对不同的对象、执行不同的写动作,然而其最终目的都是通过w_byte写到pyc文件中。了解完函数的整体结构之后,我们再看一下具体细节,看看它在写入对象的时候到底写入了哪些内容?

staticvoidw_complex_object(PyObject*v,charflag,WFILE*p){ //......elseif(PyList_CheckExact(v)){ W_TYPE(TYPE_LIST,p);n=PyList_GET_SIZE(v);W_SIZE(n,p);for(i=0;i<n;i++){ w_object(PyList_GET_ITEM(v,i),p);}}elseif(PyDict_CheckExact(v)){ Py_ssize_tpos;PyObject*key,*value;W_TYPE(TYPE_DICT,p);/*ThisoneisNULLobjectterminated!*/pos=0;while(PyDict_Next(v,&pos,&key,&value)){ w_object(key,p);w_object(value,p);}w_object((PyObject*)NULL,p);}//......}

       以列表和字典为例,它们在写入的时候实际上写的是内部的元素,其它对象也是类似的。

deffoo():lst=[1,2,3]#把列表内的元素写进去了print(foo.__code__.co_consts)#(None,1,2,3)

       但问题来了,如果只是写入元素的话,那么Python在加载的时候怎么知道它是一个列表呢?所以在写入的时候不能光写数据,类型信息也要写进去。我们再看一下上面列表和字典的写入逻辑,里面都调用了W_TYPE,它负责将类型信息写进去。

       因此无论对于哪种对象,在写入具体数据之前,都会先调用W_TYPE将类型信息写进去。如果没有类型信息,那么当Python加载pyc文件的时候,只会得到一坨字节流,而无法解析字节流中隐藏的结构和蕴含的信息。

       所以在往pyc文件里写入数据之前,必须先写入一个标识,诸如TYPE_LIST、TYPE_TUPLE、TYPE_DICT等等,这些标识正是对应的类型信息。

       如果解释器在pyc文件中发现了这样的标识,则预示着上一个对象结束,新的对象开始,并且也知道新对象是什么样的对象,从而也知道该执行什么样的构建动作。当然,这些标识也是可以看到的,在底层已经定义好了。

//marshal.c#defineTYPE_NULL'0'#defineTYPE_NONE'N'#defineTYPE_FALSE'F'#defineTYPE_TRUE'T'#defineTYPE_STOPITER'S'#defineTYPE_ELLIPSIS'.'#defineTYPE_INT'i'/*TYPE_INTisnotgeneratedanymore.Supportedforbackwardcompatibilityonly.*/#defineTYPE_INT'I'#defineTYPE_FLOAT'f'#defineTYPE_BINARY_FLOAT'g'#defineTYPE_COMPLEX'x'#defineTYPE_BINARY_COMPLEX'y'#defineTYPE_LONG'l'#defineTYPE_STRING's'#defineTYPE_INTERNED't'#defineTYPE_REF'r'#defineTYPE_TUPLE'('#defineTYPE_LIST'['#defineTYPE_DICT'{ '#defineTYPE_CODE'c'#defineTYPE_UNICODE'u'#defineTYPE_UNKNOWN'?'#defineTYPE_SET'<'#defineTYPE_FROZENSET'>'

       到了这里可以看到,其实Python对PyCodeObject对象的导出实际上是不复杂的。因为不管什么对象,最后都为归结为两种简单的形式,一种是数值写入,一种是字符串写入。

       上面都是对数值的写入,比较简单,仅仅需要按照字节依次写入pyc即可。然而在写入字符串的时候,Python设计了一种比较复杂的机制,有兴趣可以自己阅读源码,这里不再介绍。

PyCodeObject的包含关系

       有下面一个文件:

//位置:Python/marshal.c//FILE是C自带的文件句柄//可以把WFILE看成是FILE的包装typedefstruct{ FILE*fp;//文件句柄//下面的字段在写入信息的时候会看到interror;intdepth;PyObject*str;char*ptr;char*end;char*buf;_Py_hashtable_t*hashtable;intversion;}WFILE;0

       显然编译之后会创建三个PyCodeObject对象,但是有两个PyCodeObject对象是位于另一个PyCodeObject对象当中的。

       也就是foo和A对应的PyCodeObject对象,位于模块对应的PyCodeObject对象当中,准确的说是位于co_consts指向的常量池当中。举个栗子:

//位置:Python/marshal.c//FILE是C自带的文件句柄//可以把WFILE看成是FILE的包装typedefstruct{ FILE*fp;//文件句柄//下面的字段在写入信息的时候会看到interror;intdepth;PyObject*str;char*ptr;char*end;char*buf;_Py_hashtable_t*hashtable;intversion;}WFILE;1

       我们看到f2对应的PyCodeObject确实位于f1的常量池当中,准确的说是f1的常量池中有一个指针指向f2对应的PyCodeObject。

       不过这都不是重点,重点是PyCodeObject对象是可以嵌套的。当在一个作用域内部发现了一个新的作用域,那么新的作用域对应的PyCodeObject对象会位于外层作用域的PyCodeObject对象的常量池中,或者说被常量池中的一个指针指向。

       而在写入pyc的时候会从最外层、也就是模块的PyCodeObject对象开始写入。如果碰到了包含的另一个PyCodeObject对象,那么就会递归地执行写入新的PyCodeObject对象。

       如此下去,最终所有的PyCodeObject对象都会写入到pyc文件当中。因此pyc文件里的PyCodeObject对象也是以一种嵌套的关系联系在一起的,和代码块之间的关系是保持一致的。

//位置:Python/marshal.c//FILE是C自带的文件句柄//可以把WFILE看成是FILE的包装typedefstruct{ FILE*fp;//文件句柄//下面的字段在写入信息的时候会看到interror;intdepth;PyObject*str;char*ptr;char*end;char*buf;_Py_hashtable_t*hashtable;intversion;}WFILE;2

       这里问一下,上面那段代码中创建了几个PyCodeObject对象呢?

       答案是6个,首先模块是一个,foo函数一个,bar函数一个,类A一个,类A里面的foo函数一个,类A里面的bar函数一个,所以一共是6个。

       而且这里的PyCodeObject对象是层层嵌套的,一开始是对整个全局模块创建PyCodeObject对象,然后遇到了函数foo,那么再为函数foo创建PyCodeObject对象,依次往下。

       所以,如果是常量值,则相当于是静态信息,直接存储起来便可。可如果是函数、类,那么会为其创建新的PyCodeObject对象,然后再收集起来。

小结

       以上就是pyc文件相关的内容,源文件在编译之后会得到pyc文件。因此我们不光可以手动导入 pyc,用Python直接执行pyc文件也是可以的。

       以上就是本次分享的所有内容,想要了解更多欢迎前往公众号:Python编程学习圈,每日干货分享

相关推荐
一周热点