1.PyTorch - DataLoader 源码解析(一)
2.Pytorch之Dataparallel源码解析
3.PyTorch 源码解读之 torch.optim:优化算法接口详解
4.Pytorch源码剖析:nn.Module功能介绍及实现原理
5.PyTorch 源码解读之 torch.utils.data:解析数据处理全流程
6.PyTorch ResNet 使用与源码解析
PyTorch - DataLoader 源码解析(一)
本文为作者基于个人经验进行的试源初步解析,由于能力有限,源码可能存在遗漏或错误,解读敬请各位批评指正。试源
本文并未全面解析 DataLoader 的源码全部源码,仅对 DataLoader 与 Sampler 之间的解读muedit 源码联系进行了分析。以下内容均基于单线程迭代器代码展开,试源多线程情况将在后续文章中阐述。源码
以一个简单的解读数据集遍历代码为例,在循环中,试源数据是源码如何从 loader 中被取出的?通过断点调试,我们发现循环时,解读代码进入了 torch.utils.data.DataLoader 类的试源 __iter__() 方法,具体内容如下:
可以看到,源码该函数返回了一个迭代器,解读主要由 self._get_iterator() 和 self._iterator._reset(self) 提供。接下来,我们进入 self._get_iterator() 方法查看迭代器的产生过程。
在此方法中,根据 self.num_workers 的数量返回了不同的迭代器,主要区别在于多线程处理方式不同,但这两种迭代器都是继承自 _BaseDataLoaderIter 类。这里我们先看单线程下的例子,进入 _SingleProcessDataLoaderIter(self)。
构造函数并不复杂,在父类的构造器中执行了大量初始化属性,然后在自己的构造器中获得了一个 self._dataset_fetcher。此时继续单步前进断点,发现程序进入到了父类的 __next__() 方法中。
在分析代码之前,我们先整理一下目前得到的信息:
下面是 __next__() 方法的内容:
可以看到最后返回的是变量 data,而 data 是由 self._next_data() 生成的,进入这个方法,我们发现这个方法由子类负责实现。
在这个方法中,我们可以看到数据从 self._dataset_fecther.fetch() 中得到,需要依赖参数 index,而这个 index 由 self._next_index() 提供。进入这个方法可以发现它是由父类实现的。
而前面的 index 实际上是由这个 self._sampler_iter 迭代器提供的。查找 self._sampler_iter 的定义,我们发现其在构造函数中。
仔细观察,我们可以在倒数第 4 行发现 self._sampler_iter = iter(self._index_sampler),这个迭代器就是这里的 self._index_sampler 提供的,而 self._index_sampler 来自 loader._index_sampler。这个 loader 就是apk如何获取源码最外层的 DataLoader。因此我们回到 DataLoader 类中查看这个 _index_sampler 是如何得到的。
我们可以发现 _index_sampler 是一个由 @property 装饰得到的属性,会根据 self._auto_collation 来返回 self.batch_sampler 或者 self.sampler。再次整理已知信息,我们可以得到:
因此,只要知道 batch_sampler 和 sampler 如何返回 index,就能了解整个流程。
首先发现这两个属性来自 DataLoader 的构造函数,因此下面先分析构造函数。
由于构造函数代码量较大,因此这里只关注与 Sampler 相关的部分,代码如下:
在这里我们只关注以下部分:
代码首先检查了参数的合法性,然后进行了一轮初始化属性,接着判断了 dataset 的类型,处理完特殊情况。接下来,函数对参数冲突进行了判断,共判断了 3 种参数冲突:
检查完参数冲突后,函数开始创建 sampler 和 batch_sampler,如下图所示:
注意,仅当未指定 sampler 时才会创建 sampler;同理,仅在未指定 batch_sampler 且存在 batch_size 时才会创建 batch_sampler。
在 DataLoader 的构造函数中,如果不指定参数 batch_sampler,则默认创建 BatchSampler 对象。该对象需要一个 Sampler 对象作为参数参与构造。这也是在构造函数中,batch_sampler 与 sampler 冲突的原因之一。因为传入一个 batch_sampler 时,说明 sampler 已经作为参数完成了 batch_sampler 的构造,若再将 sampler 传入 DataLoader 是多余的。
以第一节中的简单代码为例,此时并未指定 Sampler 和 batch_sampler,也未指定 batch_size,默认为 1,因此在 DataLoader 构造时,创建了一个 SequencialSampler,并传入了 BatchSampler 进行构建。继续第一节中的断点,可以发现:
具体使用 sampler 还是 batch_sampler 来生成 index,取决于 _auto_collation,而从上面的代码发现,只要存在 self.batch_sampler 就永远使用 batch_sampler 来生成。batch_sampler 与 sampler 冲突的原因之二:若不设置冲突,那么使用者试图同时指定 batch_sampler 与 sampler 后,尤其是小程序审批源码在使用者继承了新的 Sampler 子类后, sampler 在获取数据的时候完全没有被使用,这对开发者来说是一个困惑的现象,容易引起不易察觉的 BUG。
继续断点发现程序进入了 BatchSampler 的 __iter__() 方法,代码如下:
从代码中可以发现,程序不停地从 self.sampler 中获取 idx 加入列表,直到填满一个 batch 的量,并将这一整个 batch 的 index 返回到迭代器的 _next_data()。
此处由 self._dataset_fetcher.fetch(index) 来获取真正的数据,进入函数后看到:
这里依然根据 self.auto_collation(来自 DataLoader._auto_collation)进行分别处理,但是总体逻辑都是通过 self.dataset[] 来调用 Dataset 对象的 __getitem__() 方法。
此处的 Dataset 是来自 torchvision 的 DatasetFolder 对象,这里读取文件路径中的后,经过转换变为 Tensor 对象,与标签 target 一起返回。参数中的 index 是由迭代器的 self._dataset_fetcher.fetch() 传入。
整个获取数据的流程可以用以下流程图简略表示:
注意:
另附:
对于一条循环语句,在执行过程中发生了以下事件:
Pytorch之Dataparallel源码解析
深入解析Pytorch之Dataparallel源码
在深入理解Dataparallel原理之前,需要明白它的使用场景和目的。Dataparallel设计用于在多GPU环境下并行处理数据,提高模型训练效率。
初始化阶段,Dataparallel需要实例化一个模型。这一步中,模型的参数会被复制到所有可用的GPU上,从而实现并行计算。
在前向传播阶段,Dataparallel的核心作用体现出来。它会将输入数据分割成多个小批次,然后分别发送到各个GPU上。在每个GPU上执行前向传播操作后,结果会被收集并汇总。这样,即便模型在多GPU上运行,输出结果也如同在单GPU上运行一样。
具体实现中,Dataparallel会利用Python的多重继承和数据并行策略。它继承自nn.Module,同时调用nn.DataParallel的构造函数,从而实现并行计算。
对于那些需要在GPU间共享的状态或变量,Dataparallel还提供了相应的管理机制,确保数据的一致性和计算的正确性。这样的设计使得模型能够高效地在多GPU环境下运行,同时保持代码的简洁性和易读性。
总结而言,燕窝溯源码020Dataparallel通过分割数据、并行执行前向传播和收集结果的机制,实现了高效的数据并行训练。理解其源码有助于开发者更好地利用多GPU资源,提升模型训练效率。
PyTorch 源码解读之 torch.optim:优化算法接口详解
本文深入解读了 PyTorch 中的优化算法接口 torch.optim,主要包括优化器 Optimizer、学习率调整策略 LRScheduler 及 SWA 相关优化策略。以下为详细内容:
Optimizer 是所有优化器的基类,提供了初始化、更新参数、设置初始学习率等基本方法。在初始化优化器时,需要传入模型的可学习参数和超参数。Optimizer 的核心方法包括:
1. 初始化函数:创建优化器时,需指定模型的可学习参数和超参数,如学习率、动量等。
2. add_param_group:允许为模型的不同可学习参数组设置不同的超参数,以适应不同的学习需求。
3. step:执行一次模型参数更新,需要闭包提供损失函数的梯度信息。
4. zero_grad:在更新参数前,清空参数的梯度信息。
5. state_dict 和 load_state_dict:用于序列化和反序列化优化器的状态,便于保存和加载模型的训练状态。
Optimizer 包括常见的优化器如 SGD、Adagrad、RMSprop 和 Adam,各有特点,适用于不同的应用场景。例如,SGD 适用于简单场景,而 Adam 则在处理大数据集时表现更优。
学习率调节器 lr_scheduler 则负责在训练过程中调整学习率,以适应模型的收敛过程。PyTorch 提供了多种学习率调整策略,如 StepLR、MultiStepLR、ExponentialLR 等,每种策略都有其特点和应用场景,如 StepLR 用于周期性调整学习率,以加速收敛。
SWA(随机权重平均)是一种优化算法,通过在训练过程中计算模型参数的平均值,可以得到更稳定的响聊app源码模型,提高泛化性能。SWA 涉及 AveragedModel 类,用于更新模型的平均参数,以及 update_bn 函数,用于在训练过程中更新批量归一化参数。
总结,torch.optim 提供了丰富的优化算法接口,可以根据模型训练的需求灵活选择和配置,以达到最佳的训练效果和泛化性能。通过深入理解这些优化器和学习率调整策略,开发者可以更有效地训练深度学习模型。
Pytorch源码剖析:nn.Module功能介绍及实现原理
nn.Module作为Pytorch的核心类,是构建模型的基础。它提供了一系列功能,包括记录模型的参数,实现网络的前向传播,加载和保存模型数据,以及进行设备和数据类型转换等。这些功能在模型的训练和应用中起到关键作用。
在训练与评估模式间切换,模块的行为会有所不同,如rrelu、dropout、batchnorm等操作在两种模式下表现不同。可学习的参数,如权重和偏置,需要通过梯度下降进行更新。非学习参数,比如batchnorm的running_mean,是训练过程中的统计结果。_buffers包含的Tensor不作为模型的一部分保存。
模块内部包含一系列钩子(hook)函数,用于在特定的前向传播或反向传播阶段执行自定义操作。子模块列表用于存储模型中的所有子模块。
魔术函数__init__在声明对象时自动调用,优化性能的关键在于使用super().__setattr__而非直接赋值。super调用父类的方法,避免不必要的检查,提高效率。使用register_buffer为模块注册可变的中间结果,例如BatchNorm的running_mean。register_parameter用于注册需要梯度下降更新的参数。
递归应用函数用于对模型进行操作,如参数初始化。可以将模型移动到指定设备,转换数据类型,以及注册钩子函数以实现对网络的扩展和修改。
调用魔术方法__call__执行前向传播。nn.Module未实现forward函数,子类需要提供此方法的具体实现。对于线性层等,forward函数定义了特定的运算流程。从检查点加载参数时,模块自动处理兼容性问题,确保模型结构与参数值的兼容。
模块的__setattr__方法被重写,以区别对待Parameter、Module和Buffer。当尝试设置这些特定类型的属性时,执行注册或更新操作。其他属性的设置遵循标准的Python行为。
模块的save方法用于保存模型参数和状态,确保模型结构和参数值在不同设备间转移时的一致性。改变训练状态(如将模型切换到训练或评估模式)是模块管理过程的重要组成部分。
PyTorch 源码解读之 torch.utils.data:解析数据处理全流程
文@ 目录 0 前言 1 Dataset 1.1 Map-style dataset 1.2 Iterable-style dataset 1.3 其他 dataset 2 Sampler 3 DataLoader 3.1 三者关系 (Dataset, Sampler, Dataloader) 3.2 批处理 3.2.1 自动批处理(默认) 3.2.2 关闭自动批处理 3.2.3 collate_fn 3.3 多进程处理 (multi-process) 4 单进程 5 多进程 6 锁页内存 (Memory Pinning) 7 预取 (prefetch) 8 代码讲解 0 前言 本文以 PyTorch 1.7 版本为例,解析 torch.utils.data 模块在数据处理流程中的应用。 理解 Python 中的迭代器是解读 PyTorch 数据处理逻辑的关键。Dataset、Sampler 和 DataLoader 三者共同构建数据处理流程。 迭代器通过实现 __iter__() 和 __next__() 方法,支持数据的循环访问。Dataset 提供数据获取接口,Sampler 控制遍历顺序,DataLoader 负责加载和批处理数据。 1 Dataset Dataset 包括 Map-style 和 Iterable-style 两种,分别用于索引访问和迭代访问数据。 Map-style dataset 通过实现 __getitem__() 和 __len__() 方法,支持通过索引获取数据。 Iterable-style dataset 实现 __iter__() 方法,适用于随机访问且批次大小依赖于获取数据的场景。 2 Sampler Sampler 用于定义数据遍历的顺序,支持用户自定义和 PyTorch 提供的内置实现。 3 DataLoader DataLoader 是数据加载的核心,支持 Map-style 和 Iterable-style Dataset,提供单多进程处理和批处理等功能。 通过参数配置,如 batch_size、drop_last、collate_fn 等,DataLoader 实现了数据的自动和手动批处理。 4 批处理 3.2.1 自动批处理(默认) DataLoader 默认使用自动批处理,通过参数控制批次生成和样本整理。 3.2.2 关闭自动批处理 关闭自动批处理,允许用户自定义批处理逻辑或处理单个样本。 3.2.3 collate_fn collate_fn 是手动批处理时的关键,用于整理单个样本为批次。 5 多进程 多进程处理通过 num_workers 参数启用,加速数据加载。 6 单进程 单进程模式下,数据加载可能影响计算流程,适用于数据量小且无需多进程的场景。 7 锁页内存 (Memory Pinning) Memory Pinning 技术确保数据在 GPU 加速过程中快速传输,提高性能。 8 代码讲解 通过具体代码分析,展示了 DataLoader 的初始化、迭代和数据获取过程,涉及迭代器、Sampler 和 Dataset 的交互。PyTorch ResNet 使用与源码解析
在PyTorch中,我们可以通过torchvision.model库轻松使用预训练的图像分类模型,如ResNet。本文将重点讲解ResNet的使用和源码解析。模型介绍与ResNet应用
torchvision.model库提供了多种预训练模型,包括ResNet,其特点是层深度的残差网络。首先,我们需要加载预训练的模型参数: 模型加载代码: pythonmodel = torchvision.models.resnet(pretrained=True)
接着,将模型放置到GPU上,并设置为评估模式: GPU和评估模式设置: pythonmodel = model.to(device='cuda')
model.eval()
Inference流程
在进行预测时,主要步骤包括数据预处理和网络前向传播: 关键代码: pythonwith torch.no_grad():
output = model(input_data)
残差连接详解
ResNet的核心是残差块,包含两个路径:一个是拟合残差的路径(称为残差路径),另一个是恒等映射(称为shortcut)。通过element-wise addition将两者连接: 残差块结构: 1. 残差路径: [公式] 2. 短路路径: [公式] (通常为identity mapping)网络结构与变种
ResNet有不同深度的变种,如ResNet、ResNet、ResNet等,网络结构根据层数和块的数量有所不同: 不同ResNet的结构图: ...源码分析
构造函数中,例如ResNet的构造过程是通过_resnet()方法逐步构建网络,涉及BasicBlock或Bottleneck的使用: ResNet构造函数: ... 源码的深入解析包括forward()方法的执行流程,以及_make_layer()方法定义网络层: forward()方法和_make_layer()方法: ...图解示例
ResNet和ResNet的不同层结构,如layer1的升维与shortcut处理: ResNet和ResNet的图解: ... 希望这些内容对理解ResNet在PyTorch中的应用有所帮助。如果你从中受益,别忘了分享或支持作者继续创作。Pytorch nn.Module接口及源码分析
本文旨在介绍并解析Pytorch中的torch.nn.Module模块,它是构建和记录神经网络模型的基础。通过理解和掌握torch.nn.Module的作用、常用API及其使用方法,开发者能够构建更高效、灵活的神经网络架构。
torch.nn.Module主要作用在于提供一个基类,用于创建神经网络中的所有模块。它支持模块的树状结构构建,允许开发者在其中嵌套其他模块。通过继承torch.nn.Module,开发者可以自定义功能模块,如卷积层、池化层等,这些模块的前向行为在`forward()`方法中定义。例如:
python
import torch.nn as nn
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=, kernel_size=3)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
torch.nn.Module还提供了多种API,包括类变量、重要概念(如parameters和buffer)、数据类型和设备类型转换、hooks等。这些API使开发者能够灵活地控制和操作模型的状态。
例如,可以通过requires_grad_()方法设置模块参数的梯度追踪,这对于训练过程至关重要。使用zero_grad()方法清空梯度,有助于在反向传播后初始化梯度。`state_dict()`方法用于获取模型状态字典,常用于模型的保存和加载。
此外,_apply()方法用于执行自定义操作,如类型转换或设备迁移。通过__setattr__()方法,开发者可以方便地修改模块的参数、缓存和其他属性。
总结而言,torch.nn.Module是Pytorch中构建神经网络模型的核心组件,它提供了丰富的API和功能,支持开发者创建复杂、高效的神经网络架构。通过深入理解这些API和方法,开发者能够更高效地实现各种深度学习任务。
Pytorch深入剖析 | 1-torch.nn.Module方法及源码
torch.nn.Module是神经网络模型的基础类,大部分自定义子模型(如卷积、池化或整个网络)均是其子类。torch.nn.Parameter是继承自torch.tensor的子类,用以表示可训练参数。定义Module时,可以使用个内置方法,例如add_module用于添加子模块,children和named_children用于获取子模块,modules和named_modules用于获取所有模块,register_parameter用于注册参数,parameters和named_parameters用于获取参数,get_parameter用于获取指定参数等。Module还支持数据格式转换,如float、double、half和bfloat,以及模型的设备移动,如cpu、cuda和xpu。训练模式调整可以通过train和eval方法实现。模型参数的梯度可以使用zero_grad方法清零。
模型的前向传播由forward方法定义,而apply方法允许应用特定函数到模型的所有操作符上。模型状态可以通过state_dict和load_state_dict方法进行保存和加载,常用于保存模型参数。此外,模型可以设置为训练模式或评估模式,影响特定模块如Dropout和BatchNorm的行为。
在PyTorch中,hook方法用于在前向和反向传播过程中捕获中间变量。注册hook时,可以使用torch.Tensor.register_hook针对张量注册后向传播函数,torch.nn.Module.register_forward_hook针对前向传播函数,torch.nn.Module.register_forward_pre_hook用于在前向传播之前修改输入张量,以及torch.nn.Module.register_backward_hook用于捕获中间层的梯度输入和输出。
通过这些方法,开发者可以灵活地调整、监控和优化神经网络模型的行为,从而实现更高效、更精确的模型训练和应用。利用hook方法,用户可以访问中间变量、修改输入或输出,以及提取特征图的梯度,为模型的定制化和深入分析提供了强大的工具。
PyTorch 源码分析(一):torch.nn.Module
nn.Module是PyTorch中最核心和基础的结构,它是操作符/损失函数的基类,同时也是组成各种网络结构的基类(实际上是由多个module组合而成的一个module)。
在Python侧,2.1回调函数注册,2.2 module类定义中,有以下几个重点函数:
重点函数一:将模型的参数移动到CUDA上,内部会遍历其子module。
重点函数二:将模型的参数移动到CPU上,内部会遍历其子module。
重点函数三:将模型的参数转化为fp或者fp等,内部会遍历其子module。
重点函数四:forward函数调用。
重点函数五:返回该net的所有layer。
在类图中,PyTorch的算子都是module的子类,包括自定义算子和整网定义。
在C++侧,3.1 module.to("cuda")详细分析中,本质是将module的parameter&buffer等tensor移动到CUDA上,最终调用的是tensor.to(cuda)。
3.2 module.load/save逻辑中,PyTorch模型保存分为两种,一种是纯参数,一种是带模型结构(PyTorch中的模型结构,本质上是由module、sub-module构造的一个计算图)。
parameter、buffer是通过key-value的形式来存储和检索的,key为module的.name,value为存储具体数据的tensor。
InputArchive/OutputArchive的write和read逻辑。
通过Module,PyTorch将op/loss/opt等串联起来,类似于一个计算图。基于PyTorch构建的ResNet等模型,是逐个算子进行计算的,tensor在CPU和GPU之间来回流动,而不是整个计算都在GPU上完成(即中间计算结果不出GPU)。实际上,在进行推理时,可以构建一个计算图,让整个计算图的计算都在GPU上完成,不知道是否可行(如果GPU上有一个CPU就可以完成这个操作,不知道tensorrt是否是这样的操作)。