1.在matlab中用lu分解求逆矩阵的逆矩源码增加三方支付教程源代码
在matlab中用lu分解求逆矩阵的源代码
function X=Ni(A)
%Input - A is an N x N matrix
%Output - I is an N x N inverse matrix of A
%and I(j,:)containing the solution to AX(:,j) =E(:,j).
%Initialize X, Y,the temporary storage matrix C, and the row
% permutation information matrix R
[N,N]=size(A);
B=eye(N); %B is an N x N identity matrix
X=zeros(N,N);
Y=zeros(N,N);
C=zeros(1,N);
R=1:N;
%the next steps is to find the factorization(factorize for only once)
for p=1:N-1
%Find the pivot row for column p
[max1, j]=max(abs(A(p:N,p)));
%Interchange row p and j
C=A(p,:);
A(p,:)=A(j+p-1,:);
A(j+p-1,:)=C;
d=R(p);
R(p)=R(j+p-1);
R(j+p-1)=d;
if A(p,p)==0
'A is singular. No unique solution'
break
end
%Calculate multiplier and place in subdiagonal portion of A
for k=p+1:N
mult=A(k,p)/A(p,p);
A(k,p) = mult;
A(k,p+1:N)=A(k,p+1:N)-mult*A(p,p+1:N);
end
end
for j=1:N
%when j is fixed then the method is similar to the Program 3.3
%Solve for Y(:,j)
Y(1,j) = B(R(1),j);
for k=2:N
Y(k,j)= B(R(k),j)-A(k,1:k-1)*Y(1:k-1,j);
end
%Solve for X(:,j)
X(N,j)=Y(N,j)/A(N,N);
for k=N-1:-1:1
X(k,j)=(Y(k,j)-A(k,k+1:N)*X(k+1:N,j))/A(k,k);
end
end