皮皮网
皮皮网
轩辕4.2源码

【换皮moba游戏源码】【myeclips源码在哪里】【红绿布局指标源码】binder内核源码_binder源码分析

时间:2024-12-24 00:54:59 分类:热点 编辑:python3源码
1.面试 | 再也不怕被问 Binder 机制了
2.一文总结Android系统服务大管家-ServiceManager
3.android和Linux的区别?
4.深度分析Binder线程池的内核启动流程
5.面试中常被问到的Framework 底层原理!
6.AndroidFramework 之启动 ServiceManager

binder内核源码_binder源码分析

面试 | 再也不怕被问 Binder 机制了

       Binder机制是源码源码Android特有的进程间通信(IPC)方式,它基于C/S架构,分析由运行在用户空间的内核Client、Server、源码源码Service Manager组件,分析换皮moba游戏源码以及运行在内核空间的内核Binder驱动组成。完整过程包括:通过内存映射技术减少数据拷贝次数,源码源码发送方进程也做内存映射可以实现数据0拷贝传输,分析但考虑到性能和复杂性,内核Binder方式更适合Android。源码源码

       mmap内存映射原理是分析在进程的用户空间和内核空间之间建立映射关系,实现文件磁盘地址与进程虚拟地址空间中的内核虚拟地址一一对映,使得进程可以采用指针方式读写操作内存,源码源码系统自动回写脏页面到磁盘,分析完成文件操作而无需再调用read、write等系统调用函数。同时,内核空间对这段区域的修改直接反映用户空间,实现不同进程间的文件共享。

       在进程间通信(IPC)场景下使用mmap时,通常只需要在进程的用户空间和内核空间之间建立映射关系,不一定需要映射到外部存储介质,除非希望将共享内存内容持久化到磁盘上。

       当使用匿名内存映射进行进程间通信时,创建一段内核空间内存并在进程的用户空间与之建立映射关系,允许多个进程共享同一段内核空间内存,实现数据共享和同步。myeclips源码在哪里匿名内存映射不与任何文件关联,仅在进程间实现高效数据传输。

       在使用mmap进行进程间通信时,创建匿名内存映射,不映射到外部存储介质,仅在用户空间与内核空间之间建立映射关系。这允许多个进程共享内核空间内存,提高数据访问效率和性能。

       在实际应用中,使用带有回调接口(Callback)的方法参数调用服务端进程提供的方法时,方法调用线程和回调线程是否相同取决于服务端实现。通常服务端采用异步处理方式,将请求放入队列或线程池中处理,调用回调接口,线程可能不相同。

       对于oneway接口调用,即使服务端立即在当前线程中处理请求并调用回调接口,客户端的调用也不会阻塞。oneway调用是单向异步的,客户端调用后立即返回,不会等待服务端响应。

       Intent传递参数在同一个进程中的两个Activity间,由于涉及Binder IPC通信,Intent数据携带大小会受到Binder事务大小限制。通常限制在1MB左右,超过限制会抛出异常。解决方法包括优化数据结构、红绿布局指标源码使用事件总线或回调接口传递大对象。

       为了深入理解Android框架,可参考《Android Framework核心知识点》手册,内容涵盖Init、Zygote、SystemServer、Binder、Handler、AMS、PMS、Launcher等知识点,以及相关源码分析资料,帮助快速掌握Android框架核心。

一文总结Android系统服务大管家-ServiceManager

       本文以源码文件为切入点,旨在解析Android系统服务大管家 - ServiceManager的具体运作。首先介绍ServiceManager简介,定义了其为C/C++编写的系统服务,并说明其源码位于/framework/native/cmds/servicemanager,通过Android.bp文件明确,该服务以程序方式构建,启动入口位于main.cpp的main()函数。运行期间,ServiceManager将不断执行looper->pollAll(-1)操作,并默认依托于设备节点/dev/binder,同时也允许通过参数设置自定义节点。ServiceManager作为binder机制的核心组件,负责实现进程间通信。主力操控指标源码

       文章接下来指出在Android.bp文件中,ServiceManager对应程序名为servicemanager,同样存在vndservicemanager程序。两者的源码一致,主要差异在于rc文件,vndservicemanager通过/dev/vndbinder作为binder驱动。在Android启动时,vndservicemanager和servicemanager都被init拉起,它们的功能区别体现在如何指定binder驱动路径。

       文章深入探讨ServiceManager的启动过程。首先介绍init进程由内核管理,该进程在启动时,依据init.rc文件拉起关键服务进程,其中包括ServiceManager。在特定目录下(/framework/native/cmds/servicemanager/),存在servicemanager.rc文件,这是servicemanager初始化的配置文件。

       进入ServiceManager详细剖析阶段。主要步骤包括获取驱动名称、初始化进程状态、创建ServiceManager实例、设置上下文对象、创建并启动looper,并执行pollAll操作。其中获取驱动名称步骤依据命令行参数或默认采用/dev/binder。初始化进程状态涉及调用initWithDriver()设置libbinder支持特定驱动,同时为进程配置参数。疾病风险自测源码创建ServiceManager实例并作为上下文对象,随后创建并启动looper,执行pollAll(-1)完成核心服务功能实现。

       文章最后指出ServiceManager的唤醒时机,通常发生在系统启动、服务注册、通信调用等场景。在Android系统中,ServiceManager的作用主要为实现应用程序与系统组件之间通过Binder机制的跨进程通信,访问和管理系统级服务,从而提供丰富的功能扩展性和灵活性。

android和Linux的区别?

       æœ‰ä»¥ä¸‹ä¸‰ç‚¹åŒºåˆ«ï¼š

       1、Android没有本地窗口系统,而Linux是有X窗口系统。

       2、Android没有glibc支持,而Linux是有glibc支持的。

       3、Android是有自己专有的驱动程序。

       è™½ç„¶Android基于Linux内核,但是它与Linux之间还是有很大的差别。

扩展资料

       Android专有的驱动程序

       1、Android Binder 基于OpenBinder框架的一个驱动,用于提供 Android平台的进程间通信(InterProcess Communication,IPC)功能。源代码位于drivers/staging/android/binder.c。

       2、Android电源管理(PM) 一个基于标准Linux电源管理系统的轻量级Android电源管理驱动,针对嵌入式设备做了很多优化。源代码位于:

       kernel/power/earlysuspend.c

       kernel/power/consoleearlysuspend.c

       kernel/power/fbearlysuspend.c

       kernel/power/wakelock.c

       kernel/power/userwakelock.c

       3、低内存管理器(Low Memory Killer) 比Linux的标准的OOM(Out Of Memory)机制更加灵活,它可以根据需要杀死进程以释放需要的内存。源代码位于 drivers/staging/ android/lowmemorykiller.c。

       4、匿名共享内存(Ashmem) 为进程间提供大块共享内存,同时为内核提供回收和管理这个内存的机制。源代码位于mm/ashmem.c。

       5、Android PMEM(Physical) PMEM用于向用户空间提供连续的物理内存区域,DSP和某些设备只能工作在连续的物理内存上。源代码位于drivers/misc/pmem.c。

       6、Android Logger 一个轻量级的日志设备,用于抓取Android系统的各种日志。源代码位于drivers/staging/android/logger.c。

       7、Android Alarm 提供了一个定时器,用于把设备从睡眠状态唤醒,同时它还提供了一个即使在设备睡眠时也会运行的时钟基准。源代码位于drivers/rtc/alarm.c。

       8、USB Gadget驱动 一个基于标准 Linux USB gadget驱动框架的设备驱动,Android的USB驱动是基于gaeget框架的。源代码位于drivers/usb/gadget/。

       9、Android Ram Console 为了提供调试功能,Android允许将调试日志信息写入一个被称为RAM Console的设备里,它是一个基于RAM的Buffer。源代码位于drivers/staging/android / ram_console.c。

       ã€Android timed device 提供了对设备进行定时控制的功能,目前支持vibrator和LED设备。源代码位于drivers/staging/android /timed_output.c(timed_gpio.c)。

参考资料:百度百科——Android

       ç™¾åº¦ç™¾ç§‘——linux

深度分析Binder线程池的启动流程

       理论基础Binder

       Binder它是Android中的一种进程间通信机制,它主要采用的是CS架构模式。Binder框架中主要涉及到4个角色Client、Server、ServiceManager及Binder驱动,其中Client、Server、ServiceManager运行在用户空间,Binder驱动运行在内核空间。

线程池

       线程池它是一种用于多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务。线程池线程都是后台线程。每个线程都使用默认的堆栈大小,以默认的优先级运行,并处于多线程单元中。

       简单的说:线程池就是创建一些线程,它们的集合称为线程池。

Binder线程池启动流程

       我们知道一个新的app应用程序进程在创建完成之后,它会通过调用RunTimeInit类的静态成员函数zygoteInitNative来进行启动Binder线程池。

       Binder线程池启动过程中,主要调用几个关键函数:ZygoteInitNative--->onZygoteInit--->startThreadPool。

       下面的源码分析主要是以android5.0版本为例。

ZygoteInitNative源码分析

       由于ZygoteInitNative函数是java实现的代码,实践上最终调用的是由C++实现的JNI方法。以下代码来源于系统的/frameworks/base/core/jni/androidRuntime.cpp文件中

staticvoidcom_android_internal_os_RuntimeInit_nativeZygoteInit(JNIEnv*env,jobjectclazz){ //gCurRuntime是个全局的变量,后面跟上的是另外实现的方法。gCurRuntime->onZygoteInit();}onZygoteInit源码分析

       onZygoteInit函数在需要源码的位置:/frameworks/base/cmds/app_process/app_main.cpp文件中。

该函数是个虚函数,并且是一个无返回值和无参数的函数virtualvoidonZygoteInit(){ //Re-enabletracingnowthatwe'renolongerinZygote.atrace_set_tracing_enabled(true);//获取进程的状态信息sp<ProcessState>proc=ProcessState::self();//打印日志信息ALOGV("Appprocess:startingthreadpool.\n");//启动线程池proc->startThreadPool();}startThreadPool源码分析

       startThreadPool系统实现在\frameworks\native\libs\binder\ProcessState.cpp文件中。

       每一个支持Binder进程间通信机制的进程内都有一个唯一的ProcessState对象,当这个ProcessState对象的成员函数StartThreadPool函数被第一次调用的时候,它就会在当前进程中启动一个线程池,并将mThreadPoolStarted这个成员变量设置为true。

//该函数是个无参数,无返回值的函数voidProcessState::startThreadPool(){ AutoMutex_l(mLock);//判断线程池是否启动状态,启动的话就将标志信息设置为true属性。if(!mThreadPoolStarted){ mThreadPoolStarted=true;spawnPooledThread(true);}}总结

       Binder在android底层中是一个非常重要的机制,我们在实际的项目调用过程中,我们在app应用程序中只要实现自己的Binder本地对象的时候,跟其他服务一样,只需要将它进行启动起来,并且进行注册到ServerMananger就可以了。至于内部的实现一般是不需要去关心的。

面试中常被问到的Framework 底层原理!

       Android 开发领域对技术的要求日益提高,不再局限于对四大组件和基础开发技能的了解。现在的公司更加注重候选人的技术深度和对源码原理的理解,尤其在大型企业的面试中,对 Android Framework 底层原理的考察尤为突出。

       Android 的进程通信机制主要通过 Binder 实现,而线程通信则依赖于 Handler。这两个机制不仅是 Android 开发的基石,也是面试中的重要知识点。

       以 Handler 为例,了解其源码结构有助于深入理解相关概念。

       Binder 作为 Android 的主要跨进程通信方式,包括 BinderProxy、BpBinder 等多种实体,以及 ProcessState、IPCThreadState 等封装。它贯穿 Java、Native 层,涉及用户态、内核态,与 Service、AIDL 等紧密相关,向下则与 mmap、Binder 驱动设备相连,是一个庞大而复杂的机制。

       面试中,面试官可能会问及基于 mmap 的拷贝实现方式。通过图形化解释,我们可以更好地理解这一过程:Client 和 Server 处于不同进程,拥有不同的虚拟地址规则,无法直接通信。通过映射页框,可以将物理内存分别与 Client 和 Server 的虚拟内存块进行映射,实现一次数据拷贝。

       精通 Framework 不仅需要对底层原理有深入了解,还需要将 Framework 知识应用于实践,如 Android App 的启动机制、AMS、PMS、WMS 等。

       许多学习者和实践者在 Android Framework 面临困扰,但很少人能够逆向分析并找到最优解决方案。Framework 是 Android 开发的深水区,也是衡量程序员能力的重要标准。

       为了帮助大家节省学习周期,我整理了《Android Framework 源码解析》这份文档,希望对大家在技术道路上有所帮助。完整版文档已在 GitHub 收录,请参考学习。

AndroidFramework 之启动 ServiceManager

        本文源码基于 Android ,涉及相关源码如下。

        ServiceManagaer 是 Binder 的守护进程,在 Binder 机制中起着重要的作用。本文将从源码的角度对其进行分析,整体流程如下:

        时序图如下。

        先来看看 ServiceManager 是如何启动的:

        在 Zygote 一文中说过, init 进程启动的第二阶段会解析 init.rc 文件。

        在这之后会触发 trigger init 。

        结合 init.rc 看看 action init 做了什么。

        当触发 trigger init 后,会启动 servicemanager 服务,其声明如下。

        对应的执行文件为 /system/bin/servicemanager ,在编译前位于 frameworks/native/cmds/servicemanager 下,来看看 Android.bp 。

        其对应的源码为 service_manager.c 和 binder.c ,入口函数 main() 位于 servicemanager.c 。

        启动完 ServiceManager 后会打开 Binder 驱动。

        在 main() 中首先调用 binder_open() 。

        binder_open() 主要做了如下事情:

        给结构体 binder_state 分配内存。

        系统调用 open() 打开 /dev/binder ,如果打开驱动失败,则执行 fail_open 释放内存。

        简单的解释一下什么是系统调用?

        由于需要限制不同的程序之间的访问能力,防止程序获取别的程序的内存数据, CPU 划分出两个权限等级,用户态和 内核态。

        所有的用户程序都是运行在用户态,但有时需要做一些内核态的事情,而唯一可以做这些事情的就是操作系统,所以程序需要向操作系统发起请求,以程序的名字来执行这些操作。这时就需要一个从用户态切换到内核态但不能控制内核态中执行的机制,这种机制就是 系统调用。

        系统调用 ioctl() 传入 BINDER_VERSION 命令获取 Binder 驱动版本,对比版本是否一致,不一致则执行 fail_open 释放内存。

        系统调用 mmap() 映射 kb 的内存空间,即把 Binder 驱动文件的 kb 映射到内存空间供 ServiceManager 使用,内存映射失败则执行 fail_map ,关闭 fd 并释放内存。

        ServiceManager 进程 mmap 的内存大小可以通过 adb shell 命令查看。

        可以看到内存映射地址为 0xff ~ 0xf ,差为 0x 即十进制的 kb 。

        打开 Binder 驱动后会将 ServiceManager 设置为上下文管理者。

        调用 binder_become_context_manager() 。

        android 新增 BINDER_SET_CONTEXT_MGR_EXT 命令来设置安全的上下文管理者,如果设置失败,则使用原有的 BINDER_SET_CONTEXT_MGR 命令来设置上下文管理者,两者区别在于是否携带参数。

        最后会进入循环,从 Binder 驱动读取和解析数据。

        调用 binder_loop() 进入循环,不断地通过系统调用 ioctl() 从 Binder 驱动读取数据,并通过 binder_parse() 进行数据解析。

        注意这里调用 binder_loop() 传入的 svcmgr_handler() ,后面会使用到。

        binder_write() 会封装 struct binder_write_read ,并通过系统调用 ioctl() 将对应的命令传递给 Binder 驱动。

        binder_parse() 用来解析从 Binder 驱动读取到的数据,然后根据不同的命令执行对应的操作。

        因为 cmd 命令可能有多个,所以通过 while 循环每次处理一个 cmd 命令,多 cmd 的结构大致如下图所示。

        这里重点看下 BR_TRANSACTION 命令。

        BR_TRANSACTION 是 Binder 驱动向 Server 端发送请求数据。

        binder_transaction_data 的结构如下,其表明了 transcation 传输的具体语义,语义码记录在 code 中,不同语义码携带的数据是不同的,这些数据由 data 指定。

        在解析完 binder_transaction_data 的具体语义后,会调用前面传给 binder_loop() 的 svcmgr_handler() ,其实就是 switch case 语义码做不同的事情。

        ServiceManager 的功能其实很简单:

        至此 ServiceManager 就分析完了。

史上最全!Android .0 最新Framework精编内核解析

       在Android开发的征途中,无论走了多久,进阶或转型都是必经之路。深入理解Android Framework,是每个开发者进阶路上的必备神器。因为,底层知识的深度与广度,算法与数据结构的精妙,基本编程理论的基石,良好的编码习惯,解决问题的能力,以及持续学习的热情,都是创新者不可或缺的素质。社会呼唤的,不仅仅是熟练的编程工匠,更是能够洞察原理、推动创新的创想者。

       如何提升这方面的技能?答案就在这里——我们精心编撰的Android .0 Framework精编内核解析,深入剖析系统启动流程、Binder交互、Handler消息传递、Activity Manager Service(AMS)和Window Manager Service(WMS)等核心模块,从浅显易懂的入门到深入细致的原理解析,一步步引领你成为底层原理的掌握者!

系统启动揭秘

       - 第一章:从系统启动概览到Zygote机制,一步步揭示Android启动流程的奥秘。

       - 第二章:Binder详解,从宏观认识,到驱动机制,再到服务管理和面试题全解析。

消息传递与服务管理

       - 第三章:Handler的源码解析,理解其工作原理,掌握面试中的热点问题。

       - 第四章:AMS的全面剖析,包括架构、通信方式,面试专题深入讲解。

窗口管理服务

       - 第五章:WMS详解,从Activity窗口管理到壁纸窗口显示,剖析每个环节的关键作用。

权限管理与系统组件

       - 第六章:PKMS源码解读,理解权限管理和Package Manager Service的运作。

       这些深入剖析的内容并非止步于此,完整的《Android Framework开发揭秘》PDF文档,为你的学习旅程提供详尽的指南。点击获取,助你高效掌握,领先一步成为Android框架的高手。

       最后,愿这份指南成为你攀登技术高峰的垫脚石,祝愿你的职业生涯熠熠生辉,实现每一个心之所向的offer!

本文地址:http://04.net.cn/news/25e348496490.html

copyright © 2016 powered by 皮皮网   sitemap