1.��13Դ��
2.PyTorch源码学习 - (13)模型的负源保存与加载
3.用python开发一个炸金花小游戏,注意别玩上瘾了~~
��13Դ��
说到二进制补码,大家都知道:有符号数的负源负数的补码是 其正数的反码+1,例如 的码负码反码补码补码是反码 加 1 = ,很多书都这么说,负源可是码负码反码补码手机 博客 源码为什么这样计算的结果就是它的补码?为什么要用补码?很多书要么不解释,要么就是负源说:这是因为在计算机内补码计算最快。(其实是码负码反码补码补码计算指令的CPU设计更容易实现) 最初我看的书,《大学计算机基础教程》(我非计算机专业),负源这破书说不清,码负码反码补码道不明,负源给与我非常严重负面的码负码反码补码影响,以至于我在以后的负源计算机学习过程中,程序设计中遇到大大小小不少麻烦和迷茫。码负码反码补码
在某些计算机组成原理书上提到:其实补码的负源计算原理,是用一个模来减去无符号的正数部分。譬如时钟,点之后是点,但是时钟上没有点怎么办?就用减去=1点。这个模是.可惜这个比喻并不是很好。
请看 一个字节长的哈蟆功指标源码无符号数的表示范围 :0~,有符号数的表示范围:-~ , 注意,这个表示范围的写法极有可能影响我们的思维,从而导致错误。我们应该这样来写:0~ ~ - ~ -1 ,这才是较好的写法。为什么?因为这个写法的数的顺序与0~ 一一对应。
由上,我们了解,其实补码不过是用 ~ 这段范围的数来表示 ~ ~ -1这段范围的负数。那么我们就可以凭自己,而不是看教材,就可以推测出计算补码的公式,就是:-欲求的负数的绝对值= 此负数的补码。
没错,就是这么简单的东西,可是却困扰了很多人。可见有个好的教材是多么的重要。
至于前面 “负数的补码是 其正数的反码+1” , 极为垃圾的教材才会把这个计算方法作为初始方法来教。因为这个计算方法屏蔽了补码的计算原理。其实这不过是旋转式源码 “ - 欲求的负数的绝对值 = 此负数的补码”的一个比较取巧的计算方法而已。请看 =1 = +1,而 减任何二进制数的结果就是把这个数取反,那么 - 某二进制数A 既是:将 A取反 +1
以上:完毕!
注:所有讨论均在字节长范围内(8bit) 进行
PyTorch源码学习 - ()模型的保存与加载
在PyTorch源码中,模型的保存与加载是通过`torch.save`和`torch.load`两个核心函数实现的。`torch.save`负责将一个Python对象持久化到磁盘文件,而`torch.load`则用于从磁盘文件中恢复对象。
在具体的实现中,`torch.save`会使用一系列辅助函数如`torch._opener`,`torch._open_zipfile_writer`,`torch._open_zipfile_writer_file`,`torch._open_zipfile_writer_buffer`等来操作文件和流。根据文件或内存缓冲区创建流容器,进行对象的保存。`torch._save`则进一步封装了文件的打开和写入过程,`torch._open_file_like`和`torch._open_file`用于管理文件句柄,`torch._open_buffer_writer`和`torch._open_buffer_reader`则封装了二进制流的读写。
对于模型加载,`torch.load`函数通过`torch._open_zipfile_reader`和`torch._weights_only_unpickler`实现。`torch._weights_only_unpickler`是阅读赚钱软件源码定制的反序列化器,限制了处理的数据类型,确保安全加载模型权重。`torch._get_restore_location`和`torch.default_restore_location`则用于获取和设置恢复位置,以支持在多设备或分布式环境下的模型加载。
实现中,Python和C++的结合是关键,PyTorch使用`PyBind`实现C++和Python接口的绑定。`torch/_C/ __init__.pyi`用于定义Python中类型信息的模板,`torch/csrc/jit/python/init.cpp`则用于实现JIT(Just-In-Time)编译系统,将C++类对象绑定到Python环境,实现高效的动态编译。
在PyTorch中,Python主要负责管理C++对象,核心工作包括管理C++对象的生命周期、调用C++方法,以及处理Python层面的逻辑和接口定义。通过这样的结合,PyTorch实现了高性能和易用性的统一,为深度学习模型的开发和应用提供了强大支持。
整体来看,源码软件的应用PyTorch的模型保存与加载机制通过精细的文件操作和对象管理,以及Python与C++的高效结合,确保了模型的高效持久化与灵活加载,为深度学习模型的开发与部署提供了坚实的底层支持。
用python开发一个炸金花小游戏,注意别玩上瘾了~~
众所周知?扑克牌可谓是居家旅行、桌面交友的必备道具,今天我们用 Python 来实现一个类似炸金花的扑克牌小游戏,先来看一下基本的游戏规则。炸(诈)金花又叫三张牌,是在全国广泛流传的一种民间多人纸牌游戏。游戏使用一副除去大小王的扑克牌,共 4 个花色 张牌,各个玩家从中抽取 3 张牌,比较大小。各种牌型的大小顺序如下(按照全排列组合中出现的概率越小,牌型分数奖励越大):1、同花顺:三张同样花色且点数连续的牌,如红心2、红心3、红心4;2、豹子:三张点数一样的牌,如 AAA、;3、顺子:三张点数连续的牌,如红心2、黑桃3、方块4;4、金花:三张同样花色的牌,如红心2、红心5、红心8;5、对子:两张点数一样的牌,如红心2、黑桃2;6、单张:2~ < J < Q < K < A。以下概率截自百度百科: 注:本文所述游戏规则与实际有所不同,主要基于对不同牌型的比较进行设计
一、游戏流程实现
1、准备扑克牌 开始游戏前,需要先生成一副满足要求的扑克牌,牌友们都知道,扑克牌有以下四种花色,每种花色有 A、2~、J、Q、K 等 张牌。
suit = ["黑桃", "红心", "方块", "梅花"]num = [str(i) for i in range(2, )] + ["J", "Q", "K", "A"]为了便于后续算分,先给每一个单张赋予相应的点数。
score_map = { }# 单张点数映射表for s in suit:count = 2for n in num:score_map[f"{ s}{ n}"] = countcount += 1扑克牌点数预览如下:
score_map = { '黑桃2': 2, '黑桃3': 3, '黑桃4': 4, '黑桃5': 5, '黑桃6': 6, '黑桃7': 7, '黑桃8': 8, '黑桃9': 9, '黑桃': , '黑桃J': , '黑桃Q': , '黑桃K': , '黑桃A': , '红心2': 2, ... }
2、玩家入场 以 p1、p2 等名称对玩家进行区分,我们先邀请 5 个玩家入场。
players = [f"p{ i}" for i in range(1, 6)]3、发牌 将玩家和扑克牌列表作为参数,传入发牌器。发牌器在扑克牌中进行不放回抽取,为每个玩家随机抽取 3 张牌,并记下玩家名称及其对应牌组。
def get_pk_lst(pls, pks):result = []for p in pls:pk = sample(pks, 3)for _pk in pk:pks.remove(_pk)result.append({ "name": p, "poker": pk})return resultpokers = list(score_map.keys())# 去掉大小王的一幅扑克poker_grp = get_pk_lst(players, pokers)# 发牌发牌预览如下:
result = [{ 'name': 'p1', 'poker': ['方块5', '梅花3', '方块A']}, { 'name': 'p2', 'poker': ['黑桃4', '方块8', '黑桃J']}, { 'name': 'p3', 'poker': ['红心', '红心K', '方块7']}, { 'name': 'p4', 'poker': ['方块4', '梅花6', '方块J']}, { 'name': 'p5', 'poker': ['红心5', '梅花', '黑桃A']}]
4、判断牌型及算分 在算分之前先按之前的映射字典,将 pk_lst 里的 3 张扑克牌转换成对应的点数。
n_lst = list(map(lambda x: score_map[x], pk_lst))# 点数映射接下来截取花色部分的文本,利用集合去重后判断是否为三张同花。
same_suit = len(set([pk[:2] for pk in pk_lst])) == 1# 是否同花色再对点数部分进行排序,与依靠点数的最值生成的顺序列表进行比较,判断是否为连续的点数。要注意的是,A 与 QKA 一样被视作顺子。
continuity = sorted(n_lst) == [i for i in range(min(n_lst), max(n_lst) + 1)] or set(n_lst) == { , 2, 3}# 是否连续别忘了考虑对子和豹子的检查方式。
check = len(set(n_lst)) # 重复情况
那么正式开始判断牌型和算分吧!首先是单张,非同花、非顺子、三张点数不一。得分以 3 个单张点数相加。
if not same_suit and not continuity and check == 3:return sum(n_lst), "单张"其次是对子,非同花,有且仅有两张点数一致。得分中对于构成对子的部分给予 2 倍奖励。
if not same_suit and check == 2:w = [i for i in n_lst if n_lst.count(i) == 2][0]single = [i for i in n_lst if i != w][0]return w*2*2 + single, "对子"金花,即同花而非顺子,给予 9 倍奖励。
if same_suit and not continuity:return sum(n_lst)*9, "金花"顺子,即点数连续而非同花,给予 倍奖励。
score_map = { }# 单张点数映射表for s in suit:count = 2for n in num:score_map[f"{ s}{ n}"] = countcount +=豹子,即三张点数一致,这不得刷个 嘛。
score_map = { }# 单张点数映射表for s in suit:count = 2for n in num:score_map[f"{ s}{ n}"] = countcount +=同花顺,同花色且点数连续,绝了,赌神一个技能 伤害。
score_map = { }# 单张点数映射表for s in suit:count = 2for n in num:score_map[f"{ s}{ n}"] = countcount +=5、决出胜负 一组玩家、抽牌、算分、牌型记录如下:
pk_grp = [{ 'name': 'p1', 'poker': ['方块5', '梅花3', '方块A'], 'score': , 'type': '单张'}, { 'name': 'p2', 'poker': ['黑桃4', '方块8', '黑桃J'], 'score': , 'type': '单张'}, { 'name': 'p3', 'poker': ['红心', '红心K', '方块7'], 'score': , 'type': '单张'}, { 'name': 'p4', 'poker': ['方块4', '梅花6', '方块J'], 'score': , 'type': '单张'}, { 'name': 'p5', 'poker': ['红心5', '梅花', '黑桃A'], 'score': , 'type': '单张'}]
利用 max 函数找出来谁是最棒的,公布名字!
score_map = { }# 单张点数映射表for s in suit:count = 2for n in num:score_map[f"{ s}{ n}"] = countcount +=赢家是------ p3
好啦,又可以开始下一场愉快的游戏了~
二、统计及源码
1、牌型统计 进行了 万场游戏并对各类牌型进行频率统计,可见与前述排列组合的计算所得概率基本一致。
score_map = { }# 单张点数映射表for s in suit:count = 2for n in num:score_map[f"{ s}{ n}"] = countcount +=2、牌局案例 各类牌型的局面和结果如下:
score_map = { }# 单张点数映射表for s in suit:count = 2for n in num:score_map[f"{ s}{ n}"] = countcount +=3、完整代码
# 炸金花from random import samplefrom collections import Counterdef get_pk_lst(pls, pks):# 发牌result = []for p in pls:pk = sample(pks, 3)for _pk in pk:pks.remove(_pk)result.append({ "name": p, "poker": pk})return resultdef calculate(_score_map, pk_lst):# 返回得分和牌型n_lst = list(map(lambda x: _score_map[x], pk_lst))# 点数映射same_suit = len(set([pk[:2] for pk in pk_lst])) == 1# 是否同花色continuity = sorted(n_lst) == [i for i in range(min(n_lst), max(n_lst) + 1)] or set(n_lst) == { , 2, 3}# 是否连续check = len(set(n_lst))# 重复情况if not same_suit and not continuity and check == 3:return sum(n_lst), "单张"if not same_suit and check == 2:w = [i for i in n_lst if n_lst.count(i) == 2][0]single = [i for i in n_lst if i != w][0]return w*2*2 + single, "对子"if same_suit and not continuity:return sum(n_lst)*9, "金花"if continuity and not same_suit:return sum(n_lst)*, "顺子"if check == 1:return sum(n_lst)*, "豹子"if continuity and same_suit:return sum(n_lst)*, "同花顺"def compare(_score_map, pk_grp):# 比大小for p in pk_grp:p["score"], p["type"] = calculate(_score_map, p["poker"])print("开牌结果------")for p in pk_grp:print(p)print("赢家是------")score_map = { }# 单张点数映射表for s in suit:count = 2for n in num:score_map[f"{ s}{ n}"] = countcount += print(best)return pk_grpdef show(_score_map, _players): # 开局pokers = list(_score_map.keys())poker_grp = get_pk_lst(_players, pokers)return compare(_score_map, poker_grp)def start_game(_score_map, _players, freq=1): # 游戏和统计type_lst = []for i in range(freq):grp = show(_score_map, _players)type_lst = type_lst + [t["type"] for t in grp]c = Counter(type_lst)print(c)total = sum(c.values())for item in c.items():print(f"{ item[0]}频率:{ item[1]/total:.2%}")if __name__ == '__main__':# 准备扑克牌suit = ["黑桃", "红心", "方块", "梅花"]num = [str(i) for i in range(2, )] + ["J", "Q", "K", "A"]score_map = { }# 单张点数映射表for s in suit:count = 2for n in num:score_map[f"{ s}{ n}"] = countcount += 1# 5个玩家入场players = [f"p{ i}" for i in range(1, 6)]# 开始游戏start_game(score_map, players, freq=)以上就是本次分享的所有内容,想要了解更多欢迎前往公众号:Python 编程学习圈,每日干货分享
原文:/post/