本站提供最佳.dll 查看源码服务,欢迎转载和分享。

【回踩买入源码】【跳过视频广告脚本的源码】【尾盘拉升 选股公式源码】ocr识别源码_OCR识别源码GIT

2025-01-24 13:08:46 来源:资金成本主图源码 分类:综合

1.jmeter中借助OCR实现验证码的识识别识别
2.ocr-ABCNetV2 环境搭建
3.ocr版书是什么意思?
4.搭建自己的OCR服务,第二步:PaddleOCR环境安装
5.PaddleOCR,别源一款文本识别效果不输于商用的源码Python库!

ocr识别源码_OCR识别源码GIT

jmeter中借助OCR实现验证码的识识别识别

       在JMeter进行接口测试时,验证码处理是别源一个常见的挑战。虽然手动测试时,源码回踩买入源码直接绕过或请求开发设置简单验证码是识识别常见做法,但这并不适用于自动化测试。别源本文将介绍一种利用OCR技术在JMeter中识别验证码的源码方法,但请注意,识识别对于背景复杂干扰的别源,识别率可能不高,源码适合纯色底纹的识识别情况。

       首先,别源通过JMeter模拟登录接口,源码获取验证码。启动JMeter,创建线程组并配置HTTP和Debug采样器。启用监听器,将验证码保存为1.png文件。

       接着,使用Java编写脚本,将转换为Base格式,这包括导入sun.misc.BASEDecoder.jar包,创建包和文件,编写ToImage类,跳过视频广告脚本的源码并导出为jar包。在Beanshell处理器中,导入此jar包并调用其方法处理验证码。

       对于验证码识别,推荐使用开源的jmeter-captcha插件,从Gitee下载jar包或源码进行二次开发。在JMeter的测试计划中,添加后置处理器,如Beanshell,配置OCR插件参数。简单验证码如纯数字、字母或汉字的识别率较高。

       尽管基础识别率可能有待提高,但通过优化OCR处理代码,可以提升识别效果。后续将分享干扰优化的技巧和深度学习方法,以进一步提升识别准确率。

       本文提供了一个基础的验证码识别框架,欢迎您持续关注并分享给有需要的朋友。

ocr-ABCNetV2 环境搭建

       端到端的文字识别模型,能够识别弯曲文本。尽管百度的 pgnet 模型无法使用,但我找到了一款新的模型。虽然效果尚未测试,但环境搭建的尾盘拉升 选股公式源码过程确实令人感到挑战,detectron2 的部署似乎不太友好。以下是环境搭建的具体步骤记录。

       注意事项:在使用 pytorch 和 detectron2 时,需要确保它们的 cuda 版本相同。这里我们统一使用 cuda-.2 版本。

       首先,创建一个 conda 虚拟环境。

       如果您不希望遇到麻烦,可以先将所有依赖包安装好,这里提供作者自己记录的依赖包列表。

       1、安装 pytorch

       如果网络状况不佳,可以使用清华源。默认安装的将是 cuda-.2 版本。

       2、安装 detectron2

       有两种安装方式:1)下载源码,编译安装;2)直接下载官方编译好的包。这里我们选择第二种方式,避免不必要的麻烦。

       3、安装 AdelaiDet

       由于需要编译源码,首先需要安装 cuda-.2 版本。您可以从 nvidia 官网下载安装命令,如下所示:

       配置 cuda 环境变量:

       安装 AdelaiDet,下载项目代码

       编译安装:

       如果网络状况不佳,JAVA 个人主页源码依赖包下载会超时。在这种情况下,可以先设置 pip 清华源,设置方法如下,在当前目录新建 setup.cfg 文件,输入以下内容:

       然后再进行编译安装:

       测试推理

       中文模型下载地址:github.com/aim-uofa/Ade...

       选择 Experimental results on ReCTS 这栏,查看实验数据表。感觉该模型仅进行了文本检测任务的训练,并未进行识别任务的训练。

       下载中文字体文件和中文字典文件,并将它们放在当前根目录下:

       注意,该模型仅支持 gpu 推理。在 cpu 上运行时,会直接报错,因为 pytorch 框架的 SyncBN 层只能在 gpu 上运行。当然,您也可以通过修改 v2_chn_attn_R_.yaml 文件,将第 行的配置参数 SyncBN 修改为 BN,然后运行。虽然程序可以运行,但这样修改是否会影响推理效果尚不清楚。

       如果只关注如何将弯曲文本拉直,可以参考:github.com/Yuliang-Liu/... 工程,下载源码,运行示例文件。网页源码采集软件哪个好

       如果只关注贝塞尔曲线的生成,可以参考:drive.google.com/file/d...

       注意,需要梯子才能访问源码。源码中只有一个 python 脚本文件,为了方便广大网友使用,这里直接将 python 代码复制下来了:

       以上就是全部代码。代码是完整的,但使用方法需要您自己领悟。

       报错处理

       可能会遇到以下错误:

       解决方法,编辑 adet/structures/beziers.py 文件,添加如下方法:

       参考:github.com/aim-uofa/Ade...

       如果仍然报错,按照官方文档编译安装指定 commit_id 版本的 detectron2。

ocr版书是什么意思?

       OCR全称为光学字符识别技术,OCR版书指的就是将印刷品转换成电子文档的一种技术。从字形上理解,OCR版书没什么区别,但在实质上,和传统的电子书是不同的。OCR版书是利用技术将纸质书扫描后,将扫描的图像转化为文本,再进行校对审核,生成最终的电子书。这种技术有效地实现了数字化图书馆的建设,提高了文献管理的效率和质量,也方便了人们的阅读。

       OCR版书技术已经广泛应用到了各个领域,但它也在不断的发展升级。目前,OCR版书的开放和可移植性正在成为趋势,因此,开放源代码、多平台可用的OCR技术已成为各大公司和研究机构关注的方向,通过合作来实现技术的共享和研发,以更好地推动OCR版书技术的发展和普及。另外,呼声较高的OCR版书中文处理的问题也得到了越来越多的关注,相信未来应该会有更多的研究专家和公司投入到这个领域,为OCR版书技术不断的提升升级。

搭建自己的OCR服务,第二步:PaddleOCR环境安装

       搭建自己的OCR服务需要安装PaddleOCR环境。在安装过程中,可能会遇到一些问题,特别是在系统配置方面。我将分享在搭建过程中遇到的问题以及解决方法。首先,安装C++开发环境。由于大多数非专业开发人员可能忽略了C++开发环境的需要,导致后续安装步骤出现错误。因此,需要从微软官网下载并安装Visual Studio社区版,选择适用于c++应用的版本。

       接下来,按照PaddleOCR官网提供的步骤进行安装。进入百度飞浆官网安装地址,选择相应的版本、系统、安装方式和计算机平台。执行安装CPU版本的paddlepaddle命令。在pip安装过程中,会自动下载依赖库,包括lanms-neo和polygon3。若未安装C++环境,可能会导致安装失败。

       安装完成后,使用python解释器验证安装情况。输入`import paddle`和`paddle.utils.run_check()`以确保安装成功,并检测到计算机的CPU数量。同时,可以参考gitee上的安装教程,以确保安装过程无误。

       接下来,使用OCR识别。首先运行识别程序,自动下载超轻量PP-OCRv3模型,包括检测模型、方向分类器和识别模型。如果需要,可以主动下载或从百度飞浆官网获取预训练模型。通过python脚本进行测试,确保OCR功能正常运行。

       对于识别率不高的问题,可以进行后续的模型训练和优化。如果选择使用官网预训练模型,可以简化后续操作。接下来,下载PaddleOCR源码。从GitHub或Gitee获取源码,以便深入学习和研究。源码目录结构有助于理解PaddleOCR的内部实现,其中`requirements.txt`文件记录了安装过程中下载的依赖库。

       至此,PaddleOCR的基本安装完成。若需要学习或研究,下载源码进行深度了解是很有帮助的。整个过程确保了环境的正确配置,为后续的OCR服务搭建奠定了基础。

PaddleOCR,一款文本识别效果不输于商用的Python库!

       PaddleOCR,一款文本识别表现出众的Python库!

       在本文中,我们将深入探讨一款名为PaddleOCR的OCR(Optical Character Recognition,光学字符识别)库。相较于传统的Tesseract,它基于深度学习技术,提供了更佳的识别效果,尤其是对于复杂文本,如多语言、斜体和小数点的识别。官方已预先提供了训练好的权重,无需用户自行训练,大大降低了使用门槛。

       在测试中,我们发现PaddleOCR在官方介绍的展示中,即使面对复杂场景,如优惠券中的文字,也能准确识别。模型的特性包括对文本块区域检测及标注,其识别性能稳定,无论是简单的还是复杂文本,都能得到良好的识别结果。

       接下来,我们将分步骤说明如何安装和使用PaddleOCR。首先,确保安装了PaddlePaddle2.0版本;然后,通过git克隆或下载项目仓库;安装必要的第三方依赖包;下载并配置预训练的检测、方向分类和识别权重;最后,在不同环境下执行识别,无论是单张还是多张,PaddleOCR都能迅速响应。

       如果你需要更具体的实践指导,可以参考我整理的数据和源码包,它包含所有必要的配置和使用步骤。PaddleOCR作为Paddle框架的一部分,展示了其在OCR领域的实力,未来我们将继续探索更多Paddle框架的优秀项目。

       感谢您的阅读,期待您的反馈,如果觉得有帮助,请给予支持。下期再见!

【本文网址:http://04.net.cn/news/1d73699262.html 欢迎转载】

copyright © 2016 powered by 皮皮网   sitemap