本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【仙女指标源码大全】【多空旗手源码】【粘合上涨源码】源码跳表

2024-11-18 23:00:39 来源:休闲 分类:休闲

1.译:一文科普 RocksDB 工作原理
2.redis源码阅读--跳表解析
3.面试说两天给结果给我,源码跳表那都没有机会为什么不说今天给结果给我?
4.读懂Redis:从源码分析其跳表实现
5.深入理解跳表及其在Redis中的源码跳表应用

源码跳表

译:一文科普 RocksDB 工作原理

       RocksDB 是一种可持久化的、内嵌型的源码跳表键值存储(KV 存储)。它旨在存储大量 key 及其对应的源码跳表 value,常被用于构建倒排索引、源码跳表文档数据库、源码跳表仙女指标源码大全SQL 数据库、源码跳表缓存系统和消息代理等复杂系统。源码跳表RocksDB 在 年从 Google 的源码跳表 LevelDB 分叉而来,针对 SSD 服务器进行了优化,源码跳表并目前由 Meta 开发和维护。源码跳表它以 C++ 编写,源码跳表支持 C、源码跳表C++ 及其他语言(如 Rust、源码跳表Go、源码跳表Java)的嵌入。如果你熟悉 SQLite,可以认为 RocksDB 是一种内嵌式数据库,需依赖应用层实现特定功能。

       RocksDB 使用日志结构合并树(LSM-Tree)作为核心数据结构,这是一种基于多个有序层级的树形数据结构,可用于应对写密集型工作负载。LSM-Tree 的顶层是 MemTable,一个内存缓冲区,用于缓存最近的写入数据。较低层级的数据存储在磁盘上,以 L0 层为例,存储从内存移动到磁盘的数据,其他层级存储更旧的数据。当某一层级的数据量过大时,会通过合并操作转移到下一层。

       为了保证数据持久化,RocksDB 将所有更新写入磁盘上的预写日志(WAL)。当应用重启时,可以通过回放 WAL 来恢复 MemTable 的原始状态。WAL 是一个只允许追加的文件,包含一组更改记录序列,每个记录包含键值对、操作类型和校验和。

       当 MemTable 变满时,会触发刷盘(Flush)操作,将不可变的 MemTable 内容持久化到磁盘,并丢弃原始 MemTable,同时开始写入新的 WAL 和 MemTable。MemTable 默认基于跳表实现,以提高查询和插入效率。RocksDB 支持各种压缩算法,如 Zlib、BZ2、Snappy、LZ4 或 ZSTD,用于存储 SST 文件。

       SST 文件是 MemTable 刷盘后生成的,包含了有序的键值对。每个 SST 文件由数据部分和索引块组成,数据部分包含一系列有序的键值对,而索引块存储了数据块中最后一个键的偏移量,便于快速定位键值对。RocksDB 还支持布隆过滤器,用于快速检测某个键是否存在于 SST 文件中。

       当数据库大小增加时,空间放大(存储数据所用实际空间与逻辑大小的比值)和读放大(用户执行一次逻辑读操作所需实际 IO 次数)的问题变得明显。为了解决这些问题,RocksDB 实现了 Compaction 机制,通过合并 SST 文件来降低空间和读放大,同时增加写放大。Leveled Compaction 是默认策略,它会在不同层级之间进行选择性合并,以优化空间使用。

       RocksDB 的读路径相对简单,主要涉及从 MemTable 开始,下探到 L0 层,然后继续向更低层级查找,直到找到目标键或检查完整个树。合并(merge)操作允许用户在内存中对键值进行聚合操作,多空旗手源码适用于需要对已有值进行少量更新的场景。然而,这种操作增加了读时的复杂性,因为读操作需要在多次调用 merge 函数后才能得到最终结果。

       使用 RocksDB 需要针对特定工作负载进行配置调优,因为它提供了许多可配置项,但理解其内部原理并调整这些配置通常需要深入研究源代码。RocksDB 是构建高性能数据库模块的优秀选择,能够帮助开发者专注于上层业务逻辑实现,而无需从零开始设计底层存储系统。

redis源码阅读--跳表解析

       跳表是 Redis 中实现 zset 和 set 功能的关键数据结构。通过在链表基础上构建多级索引,跳表有效提升了查找效率,且其实现相较于红黑树更为简洁,无需大量精力来维持树的平衡。跳表节点具有顺序排列的特性,支持范围查询。

       跳表的构成包括头结点、尾节点、长度以及索引层数。每一个节点包含数据 robj、分数 score 用于排序、上一节点指针 prev 用于反向遍历,以及多层索引信息 levels。各层索引 skiplistlevel 包括该层索引中节点指向的下一个节点指针 next 和间隔 span。节点的索引层数通过随机数生成,设计思路为使用第 n 级索引是使用第 n-1 级索引概率的 1/4,最多使用 级索引。使用如此设计可确保即便用到最高层级,所持数据量也足够大,无需担心索引不足。

       跳表按照 score 和 robj 的大小进行排序,因此节点有序,支持范围查找。插入节点时,首先找到新节点可以插入的位置,即比新节点小的最大节点。此过程从最高层索引开始,使用 update 数组记录各层索引中节点的前一节点位置,以及 rank 数组记录 update 节点到 header 的间隔 span。新节点插入后,更新 prev 指针、tail 指针、跳表长度等信息。

       删除节点同样遵循类似的逻辑,先查找节点的前一个节点,然后删除目标节点。在删除过程中,需要检查节点的下一节点是否为待删除数据,并调整节点连接和更新跳表的 level 值。当某层索引中节点的 next 指针变为 nil 时,该层索引已无用,可将 level 减一。最后,更新跳表长度。

       虽然跳表概念看似复杂,但通过理解其多级索引机制,其余操作如范围查询、排名查询等将变得相对简单。在实际应用中,可通过阅读 Redis 源码中的 t_zset.c 和 redis.h 文件,了解跳表的具体实现。然而,更难的是将这些抽象概念转化为清晰、易于理解的文档,绘制图表对于深入理解跳表的逻辑非常有帮助。

面试说两天给结果给我,那都没有机会为什么不说今天给结果给我?

       ‍

       今天给大家分享一个关于一次奇葩面试:喊价K,HR却给了K的经历,网友评论说:面试造飞机,工作拧螺丝?

       自报家门

       先做个自我介绍,楼主坐标帝都,5 年经验,跳槽之前在一家传统小公司,粘合上涨源码年薪 万。

       这次面试前前后后大概两个月的时间,面试了大概 6 家公司,命中 4 家,最终去了一家估值 亿美金的生鲜电商独角兽,年薪 万,刚好翻倍。

       面试过程

       话不多说,直接进入面试现场!

       好未来

       开始面试第一天上午投递好未来,下午 3 点面试,一共面试了 3 轮,问的问题比较多。

       第一轮

       面试官看了我的简历,首先让我画出 Eureka 的执行流程,这块在之前的准备过程中有深入看过,因此比较流畅的画出来并配合解释说明。

       之后问到项目中使用分布式锁解决缓存重建并发的问题,并要求画出实际的执行流程,数据库也问的比较多,像事务的隔离级别,MySQL 实现可重复读的原理,索引等。

       面试官给出了一个场景,在数据库主从同步的情况下,如果从库同步主库的数据延迟比较高,怎么才能在写到主库后立刻能够读取到数据。

       我解释了主从同步的原理,并以此说明主库到从库的复制一定是有延迟的,因此要保证当写到主库的时候立刻能读到数据。

       要么就直接配置那个接口读数据的话直接走主库,因为这种写完主库立刻要读取数据的场景比较少,可以做些特殊配置。

       另一种方案就是在往主库写数据的时候,可以直接往内存缓存中写一份,设置一个较短的过期时间,后面可以直接从缓存中读到数据。我说完之后,面试官也没给出评价,就这么过去了。

       此外,还问到一些基础性的问题,比较印象深刻的是:在加锁的时候,用什么锁对象是内存占用最小的,我说是 Object 对象,面试官说不对,我一时没想出来,面试结束后和朋友探讨,觉得应该是长度为 0 的 byte 数组。

       其他还问到了 Collections.sort() 使用的排序算法,AQS,线程池,ThreadLocal 等等问题,主要都是一些考察基本功的问题,一轮面试就这么过去了!

       第二轮

       面试官更关注对一些技术的理解,问到了 ElasticSearch 的一些基础以及它和 MySQL 的区别在哪里;Eureka 和 Zookeeper 做服务发现的区别在哪里。

       还问了分布式限流有哪些方案,以及用线程池进行限流的缺陷是什么,项目中系统日志的处理;还有 JVM 模型,JMM 模型,垃圾回收机制,垃圾收集器等问题。

       之后聊了一些设计模式的使用,在项目中使用了哪些设计模式,对设计模式的几个原则的理解。

       第二轮结束后,由于第三轮的面试官在开会,所以等了一段时间,等面试官来了之后,只聊了很短时间,面试官就说还有别的事,今天先到这里了。

       主要问到了上家公司的加班情况,对加班的认识,职业规划,网页源码禁用js也问了几个技术问题,像 Tomcat 的优化这块,自我感觉答的不是很好。

       整个面试从 3 点到 7 点,有点虎头蛇尾的感觉,结束后也没有消息了。

        到家

       面试一共三轮,上午 点过去,两轮技术面,下午两点过去,等了一会,然后跟 HR 聊了有半个多小时,HR 说明在一周之内会有结果。

       第一轮

       第一轮面试官的问题主要集中在基础上,我大概罗列了问到的一些问题,不同的简历不同人肯定问的也不太一样,有兴趣的同学可以参考看看。

       主要是 JVM 模型,锁的原理,Synchronized 和 ReentrantLock的区别,偏向锁/轻量级锁/重量级锁的原理,能否从偏向锁直接升级成重量级锁。

       Java 并发包里有哪些类,如何使用,线程池原理和参数配置,JVM 调优,堆大小的设置,多线程的线程数的设置,Volatile 原理,ThreadLocal 原理和使用。

       Redis 和 Zookeeper 如何实现分布式锁,Redis 的数据类型,一些具体命令,比如要获取一个有序列表的前 个元素应该用什么命令。

       数据库索引的使用,聚簇索引和非聚簇索引,没有主键的话,数据如何组织。

       B+ 树的原理,InnoDB 引擎和 MyISAM 引擎的区别和使用场景,数据库隔离级别和原理,MySQL 的分库分表,MQ 的可靠性和顺序性,ES 插入数据的原理等。

       第二轮

       第二轮是部门 Leader 来面试,这轮面试主要集中在框架源码上,我画出了源码的执行流程,之后面试官在一些点深问,因为这块我看的比较全面,问的问题基本都答出来了。

       然后这里面试官还问了在源码中我有学到什么东西,我讲了使用配置类代替 Properties 文件,Volatile 在单例模式中的使用,内存的多级缓存机制,线程池的各种不同应用场景,MeasureRate 统计一分钟内心跳次数,批处理机制等。

       这里我的回答主要集中在代码编写层面,也可以从架构层面说下学到了哪些,我觉得后者更有高度。

       最后我向面试官咨询了这个岗位具体做的事情,部门是基础服务部,面试官画图给我说明了部门内部一些项目划分,技术栈的使用,后续的规划等内容,并约我下午继续跟 HR 聊。

       HR 面

       下午跟 HR 的面试,HR 顺着简历上的公司一个个聊,问了离职原因,公司情况,如何向上司提出离职的,团队规模,是否带团队。

       还问了上午面试的定位开发源码岗位知不知道具体要做什么,之后 HR 说了下公司的一些情况,上班时间,福利,加班情况,问了我现在的薪资情况,期望薪资,我问了下出结果的时间,HR 说一周之内。

       第二周的周五下午六七点的时候,这家公司 HR 给我打电话,告诉我面试通过了,之后提到了给我的薪资,算下来竟然只给了我一个 5% 的涨幅。

       HR 给出的解释是,因为我前家公司上一年只发了 薪,而他们有 薪和两个多月的绩效,用 个月的薪水除以 ,算下来平均到每个月也能达到我期望薪资的水平。

       这个计算方法实在是膈应人,虽然 HR 后来表示可以跟 CEO 申请提高每月的 Base(大概提高到 % 的水平吧),不过当时我已经有较为满意的 Offer 了,还是决定不去这家了。

       某生鲜电商独角兽

       由于前面说了薪资,就不说具体公司名字了。这家公司我面试了两天,一共三面,第一天笔试加初面,然后第二天有两轮复试。

       第一轮

       一面主要还是基础,集中在 IO/并发/缓存/Redis/Zookeeper/分布式/JVM/数据库等。

       其中问到 Redis 的单线程模型的时候,我这块了解的不是很清楚,只是知道使用 NIO 的方式,然后以自己的理解去说了,面试官表示这可能是我看过别的框架的模式,跟 Redis 搞混了,不过也算是答上来一些了。

       之后聊了一些项目的情况,比如每日的访问量有多少,QPS 多少,订单量多少等数据,据此得出数据库的访问压力如何。

       另外也深入问了使用分布式事务的一些问题,还有分布式事务在时间上的性能。

       所以这里给各位兄弟强调一下,对自己的项目一定要非常熟悉,各个点都要考虑到。

       一面跟面试官聊的还挺好,面试官也表示我的基础还不错,问我是不是平时都有学习,之后就是约二面了。

       由于当时已经下午 1 点了,后面的面试官也在中午休息,而我下午也还有别的面试,因此 HR 跟我约第二天来复试。

       第二轮

       二面的面试官也聊了基础和一些设计上的问题,比如同时访问三个有相同功能的 API,要求将执行最快的结果返回,有哪些方式,这块主要还是考察对并发编程,并发控制的理解和掌握,有一些并发控制的类能够做到。

       其他的还问到了,要开发一个新的 API,需要考虑哪些方面,把所有要考虑的地方都说出来,大家可以说下边界处理,高可用,并发问题,可扩展性,幂等性,重试机制等等,可以说的非常多。

       总体问了有 6 块内容吧,面试官一边问也一边在记录,一些基础的问题这里就不再多说了。

       第三轮

       三面的面试官问的要更底层一些,Java 线程与内核线程的关系,与进程的关系;关于并发我所了解的方方面面。

       对于这个,我从为什么有并发,并发问题产生的根源,解决并发问题的一些理论,Java 中解决并发问题的方式,不同方式的适用场景和对比等方面进行了回答。

       另外还问到 Redis 的几种数据类型,以及每种数据类型的底层实现,跳表这种数据结构如何插入数据, Hash 如何扩容。

       这块我跟面试官说具体扩容规则不太了解,然后向面试官说了我了解的 Java 中的 HashMap 的扩容规则和具体实现。

       Tips:面试时如果遇到自己不太熟悉的部分,可以稍作变通,把自己熟悉的内容和面试官的问题结合起来。

       之后又问了一些小的知识点,有的也没答好,像 CopyOnWrite 就不知道用来做什么,然后就是一些为什么离职之类的问题,对未来职业发展的考虑等。

       之后面试官问我有什么想了解的,也问了我的期望薪资,我说了具体的数,也表示没想要太多,更看重平台的发展,最后面试官说明天 HR 会打电话给我。

       HR 面

       最后就是跟 HR 的沟通了,第二天 HR 打来电话告知面试通过,然后问了我期望薪资,沟通入职时间,之后加微信,按照 HR 的要求提供了一些材料,第二天就收到 Offer 了。

       PS:最终楼主选择了这家公司,除了很有竞争力的薪资之外,我还很看重这家公司的发展平台,因为他们有非常大的用户量,会遇到各种技术挑战,是很好的提升锻炼的机会。

       然后这里有一个开篇提到的小插曲:当时 HR 电话问我期望薪资的时候,我说 K。

       结果后续加微信聊天时,HR 告诉我技术面试的反馈很好,决定给我 K,一个月还有 的补助,算下来一个月有 K,发 个月。这种 HR 主动加薪的事情我还是第一次见,意外之喜,哈哈!

       玩吧

       这家公司的职位是去做 App 后台的,用户量也不错,面试一共两轮技术面,最后是 HR 面。

       第一轮

       一面的时候,网络这块问的比较多,三次握手,四次挥手什么的,还有整个网络请求的执行流程,数据包的大小,对长连接的理解等。

       然后数据库这块也问了一些,提供了一个场景,假如要实现一个最简单的朋友圈,用户可以看到朋友的朋友圈动态,朋友也可以看到用户发的动态,然后问表的设计。

       我说了自己的实现,像用户表,好友表。面试官问有没有更好的方式,我没答上来,面试官表示这个轻易可能想不到,就问别的问题了,别的也没什么特殊的问题,都是一些基础的东西,大概聊了一个小时吧,就到了第二面了。

       第二轮

       二面是技术总监面的,整体没怎么聊技术,就是一些个人素质上的考察。比如:

为什么会选择做开发,没做别的用三个短语来描述自己的优点说说自己的缺点现在公司有系统稳定运行着,如果你发现了有新的技术能够改善现有系统,你会不会引进,会考虑哪些方面日常学习的方式,看过哪些书有没有带团队,描述下团队成员的优缺点,有没有改善有没有面试过别人,会从哪些方面考察职业规划是怎样的,想做技术管理还是技术专家对 Shell 熟不熟悉,写个 Word-Count 用到哪些命令

       最后还聊了下公司的氛围,项目的情况等。然后也没啥特殊的,就过了。

       HR 面

       最后跟 HR 聊,主要还是说了下公司的福利待遇,公司的氛围,也问了我现在有没有 Offer,对他们的感觉怎么样。

       然后问了之前公司的薪资和现在的期望薪资,最后加了微信,告诉我两天内给结果。最后也是成功通过了面试并拿到了 Offer。

       友信金服-人人贷

       这家公司面试有三轮,大同小异,这里简短的说一下。

       第一轮

       一面仍然是基础的考察,像 CAS 的理解,和它存在的问题,ConcurrentHashMap 的锁机制,ElasticSearch 倒排索引,Eureka 的底层源码,还有服务访问的重试机制等等。

       第二轮

       二面上来问了垃圾回收的问题,类似下面的代码:

       问 a 和 b 能否被垃圾回收?这里主要考察 JVM 如何判断一个对象是否可以被回收,是通过引用计数还是可达性分析,引用计数的方式会产生像上面代码一样的循环引用的问题,所以 JVM 没有采用这种方式。

       第二个问题是,如果有个跟 Java 中原生的 String 一模一样的类,包括包名,类名都是一样的,方法也是一样的,唯独比原生的 String 的方法多个打印输出语句。

       然后把它放进项目的依赖中,在写程序的时候,导入 String 类,问到底执行的是 Java 原生的 String 的方法还是自己写的 String 方法。

       对于这个问题,可以考虑下 Java 中类加载的双亲委派模型。

       然后就聊了项目的一些架构,问的比较细,要求我对每块都详细画图解释。

       最后就是让画一个 Spring Cloud 技术栈所有框架的整体执行流程图,并对 Hystrix 的限流熔断机制做了解释说明,别的好像也没什么了。

       这之后二面算是结束了,面试官和我说了下自己团队的情况,人员情况,要做的项目的情况等。

       第三轮

       最后一面是业务总监面的,面试官让我说了下自己在公司做了哪些事情,我挑其中一个项目做了仔细说明,然后说了下职业规划,对行业的看法等等。

       最后 HR 和我加了微信,同样说是两天内给结果,不过第二天他们就给出通过的结果了,然后发了 Offer。

       某实时数据分析服务公司

       这是一家做体育赛事的实时数据分析展示的公司,公司不大,去年拿了 A 轮融资,看网上整体评价还不错,就去试了试。

       面试总共有技术两轮,HR 一轮。去的时候首先是写笔试题。做完之后进入面试。

       第一轮面试官没有聊太久,问的问题也比较偏基础,就是一些面试常问的问题,然后说了 Eureka 的执行原理,说完之后,面试官就去叫技术总监了。

       第二轮面试是技术总监面的,技术点没问太多,主要集中在之前的笔试题上,笔试题包括 SQL 的考察,还有几道算法题:找出有序数组中指定元素出现的次数;二叉查找树从小到大排序。因为时间的问题,我主要写了实现思路。

       还有一题是,有 瓶水,其中一瓶有毒,小白鼠喝一滴有毒的水一小时后会死,要在一小时找出来哪瓶水有毒最少需要几只小白鼠。

       在 SQL 的考察这块,面试官看完我的答案后,又改了其中的需求,要求给出 SQL 的实现,另外也问到了 SQL 的执行效率。

       这里给大家强调一下,我面的基本上每家公司面试都会问到数据库,所以这块还是挺重要的,需要重点去看。

       然后关于找出有序数组中指定元素出现次数的问题,原来要求的时间复杂度是 O(lgn),后来面试官说不要求任何时间空间复杂度,如何简单的实现,我给出的方案是用 HashMap,相同的 Key 每出现一次,Value 加 1。

       然后是小白鼠问题,说了解题思路,主要就是用位的思想,对 瓶水编码,实际只需要 4 个位就可以。

       之后面试官还现场出了别的算法题,我基本都给出了结果,总体而言面试还比较顺畅,之后聊了下职业规划,技术发展,学习新技术的方法,面试官也聊了之后他们准备做的事情,并给我现场演示了他们的项目。

       最后到了 HR 面,主要聊了下上家公司离职的原因,公司福利,上下班时间,我的期望薪水,还问到之前有没有带团队的经历等。

       最终他们在第二周的周四才给出面试通过的结果并表示正在走 Offer 流程,由于 CEO 不在,在薪资上还没最终确定,我因为有了更满意的 Offer,因此婉拒了。

       总结

       总结一下,这两个月的面试,我觉得最重要的就是基础和项目这两块,基础一定要扎实,否则第一轮面试可能都过不了。

       JVM,并发是非常高频被问到的地方,在开始面试之前一定要好好准备,另外也需要有自己非常熟悉的领域。

       在这个领域里,面试官的一切问题你都可以 Hold 住,我觉得,对于这种基础好,而且有自己长处的面试者,面试官没有理由不喜欢。

       还有项目这块,对项目的细节一定要清楚,各种方案的设计思路,实现细节等等都要了如指掌,这样在面试官对各种细节的追问下不至于手忙脚乱。

读懂Redis:从源码分析其跳表实现

       要深入理解Redis中跳表的奥秘,首先,我们从理想化的跳表概念开始。跳表作为一种多层级有序链表,旨在提供高效的有序集合操作,如zrange和zrevrange。它的设计旨在通过空间换时间,以O(log_2 n)的时间复杂度进行查找,但删除和增加操作可能导致结构变动,这在理想情况下需要复杂的重构。

       Redis在实践中对跳表进行了优化,以牺牲一定程度的复杂性来节省内存。它限制了跳表的最高层级为,并根据节点数量和字符串长度选择是否使用跳表。Redis的跳表设计重点在于第一个层级的元素,这使得范围查询极其高效,而这是其他数据结构难以比拟的特性。

       当添加新元素到zset对象时,会根据特定条件(zset_max_ziplist_entries和zset_max_ziplist_value)决定是否转换为跳表。通过配置Redis的配置文件,用户可以调整这些参数以适应不同的需求。

       总的来说,Redis的跳表实现是内存与性能之间的一种平衡,它在有序集合操作中发挥着关键作用,同时为高效查询提供了基础。对于希望系统学习C/C++、Linux系统和深入理解高性能存储的读者,可以关注我们的公众号《Lion 莱恩呀》获取更多技术内容,包括白金学习卡,覆盖基础架构、golang云原生等领域。

深入理解跳表及其在Redis中的应用

       跳表,一种在多个应用中可能替代平衡树的数据结构,由William Pugh发明,本文将深入理解跳表及其在Redis中的应用。

       跳表通过并联的链表实现高效操作,时间复杂度可达到O(logN),且对并发友好。跳表结构包含多层有序链表,元素在随机层出现,但保证所有下层链表同样包含该元素。底层链表包含所有元素,头尾节点不存储元素,且头尾节点的层数代表最大层数。节点包含两个指针,分别指向当前层后一节点及下层同元素节点。

       查找元素如时,从顶层头节点开始,依次向下,直至找到元素或遍历完所有层。跳表相比传统链表,以空间换时间,减少查找所需时间。跳表算法具有与平衡树相似的渐进预期时间边界,并且更简单、快速,使用空间更少。其非严格的平衡机制,基于概率而非严格平衡,让插入和删除操作更为便捷快速。

       跳表节点定义包含元素数据和指针,实现简单,直接比较元素数据大小。初始化时,头尾节点随机指定层数,头尾节点层数代表当前跳表层数。添加元素前随机指定层数,超过当前层数则扩大跳表层数。添加元素时从顶层开始,逐层插入,直至遍历所有层或找到适当位置。搜索元素时,从顶层开始,遵循目标值与当前节点值及后一节点值的比较规则,直至找到或遍历所有层。删除元素时,搜索待删除节点,从最高层开始,逐层删除。

       跳表完整代码包括节点定义、初始化、添加、搜索和删除方法。ZSet结构在Redis中使用跳表和字典实现,跳跃表按score从小到大保存元素,字典保存成员到score的映射,两者共享成员和score,避免额外内存浪费。

       在Redis中,ZSet结构的跳表实现遵循随机层数生成原理,与原论文描述一致但有细微差异。生成随机层数的源码在src/z_set.c中,涉及位运算的实现逻辑。实际应用中,不同系统可能采用不同实现方法,关键在于随机数生成。跳表节点的平均层数遵循幂次定律,大部分节点层数较低,少数层数较高。定量分析显示,节点层数期望值与1-p成反比,对于Redis而言,当p=0.时,结点层数的期望值为1.。

       跳表用空间换取时间,时间复杂度与AVL树和红黑树相同,但避免了维持高度平衡的时间开销。与AVL树和红黑树相比,跳表在插入或删除节点时效率更高,但需要额外存储多个层的节点。跳表的非严格平衡机制,基于概率而非严格平衡,使得插入和删除操作更为快速且节省空间。

       总结,跳表是一种高效、并发友好的数据结构,Redis中ZSet结构的实现展示了跳表的实际应用。通过深入理解跳表的原理和Redis中的应用,可以更好地利用跳表优化数据管理和操作效率。

相关推荐
一周热点