【qe影院源码】【bolt源码】【kingkong源码】修改grafana源码_grafana 源码

时间:2024-12-24 03:39:08 分类:opencv 能用源码吗 来源:星球重启单个源码

1.通过transmittable-thread-local源码理解线程池线程本地变量传递的修改原理
2.收藏 Kafka监控组件大全
3.开源爱好者月刊(第 8 期):Apache 基金会的故事
4.部署Kafka监控
5.基于Prometheus + Grafana搭建IT监控报警最佳实践(2)
6..NET 6+Loki+Grafana实现轻量级日志可视化服务功能

修改grafana源码_grafana 源码

通过transmittable-thread-local源码理解线程池线程本地变量传递的原理

       最近几周,我投入了大量的源源码时间和精力,完成了UCloud服务和中间件迁移至阿里云的修改工作,因此没有空闲时间撰写文章。源源码不过,修改回忆起很早之前对ThreadLocal源码的源源码qe影院源码分析,其中提到了ThreadLocal存在向预先创建的修改线程中传递变量的局限性。恰好,源源码我的修改一位前同事,HSBC的源源码技术大牛,提到了团队引入了transmittable-thread-local(TTL)来解决此问题。修改借此机会,源源码我深入分析了TTL源码,修改本文将全面分析ThreadLocal和InheritableThreadLocal的源源码局限性,并深入探讨TTL整套框架的修改实现。如有对线程池和ThreadLocal不熟悉的读者,建议先阅读相关前置文章,本篇文章行文较为干硬,字数接近5万字,希望读者耐心阅读。

       在Java中,没有直接的API允许子线程获取父线程的实例。获取父线程实例通常需要通过静态本地方法Thread#currentThread()。同样,为了在子线程中传递共享变量,也常采用类似的方法。然而,这种方式会导致硬编码问题,限制了方法的复用性和灵活性。为了解决这一问题,线程本地变量Thread Local应运而生,其基本原理是通过线程实例访问ThreadLocal.ThreadLocalMap来实现变量的存储与传递。

       ThreadLocal与InheritableThreadLocal之间的区别主要在于控制ThreadLocal.ThreadLocalMap的创建时机和线程实例中对应的属性获取方式。通过分析源码,可以清楚地看到它们之间的联系与区别。对于不熟悉概念的读者,可以尝试通过自定义实现来理解其中的原理与关系。

       ThreadLocal和InheritableThreadLocal的bolt源码最大局限性在于无法为预先创建的线程实例传递变量。泛线程池Executor体系、TimerTask和ForkJoinPool等通常会预先创建线程,因此无法在这些场景中使用ThreadLocal和InheritableThreadLocal来传递变量。

       TTL提供了更灵活的解决方案,它通过委托机制(代理模式)实现了变量的传递。委托可以基于Micrometer统计任务执行时间并上报至Prometheus,然后通过Grafana进行监控展示。此外,TTL通过字节码增强技术(使用ASM或Javassist等工具)实现了类加载时期替换Runnable、Callable等接口的实现,从而实现了无感知的增强功能。TTL还使用了模板方法模式来实现核心逻辑。

       TTL框架的核心类TransmittableThreadLocal继承自InheritableThreadLocal,通过全局静态变量holder来管理所有TransmittableThreadLocal实例。holder实际上是一个InheritableThreadLocal,用于存储所有线程本地变量的映射,实现变量的全局共享。disableIgnoreNullValueSemantics属性的设置可以影响NULL值的处理方式,影响TTL实例的行为。

       发射器Transmitter是TransmittableThreadLocal的一个公有静态类,提供传输TransmittableThreadLocal实例和注册当前线程变量至其他线程的功能。通过Transmitter的静态方法,可以实现捕获、重放和复原线程本地变量的功能。

       TTL通过TtlRunnable类实现了任务的封装,确保在执行任务时能够捕获和传递线程本地变量。在任务执行前后,通过capture和restore方法捕获和重放变量,实现异步执行时上下文的传递。

       启用TTL的Agent模块需要通过Java启动参数添加javaagent来激活字节码增强功能。TTL通过Instrumentation回调激发ClassFileTransformer,实现目标类的字节码增强,从而在执行任务时自动完成上下文的捕捉和传递。

       TTL框架提供了一种高效、灵活的方式来解决线程池中线程复用时上下文传递的问题。通过委托机制和字节码增强技术,TTL实现了无入侵地提供线程本地变量传递功能。kingkong源码如果您在业务代码中遇到异步执行时上下文传递的问题,TTL库是一个值得考虑的解决方案。

收藏 Kafka监控组件大全

       本文概述了用于监控Kafka系统的多种组件,包括Burrow、Telegraf、Grafana以及一些其他工具,如Kafka Manager、Kafka Eagle、Confluent Control Center和Kafka Offset Monitor。以下对这些工具进行了简要介绍。

       Burrow是一个用于监控Kafka的组件,由Kafka社区的贡献者编写,主要关注于监控消费者端的情况。它使用Go语言编写,功能强大,但用户界面不提供,可通过GitHub获取二进制文件进行安装。

       Telegraf是一个数据收集工具,与Burrow结合使用,用于收集Kafka监控数据,并将其存储到InfluxDB中,以便在Grafana中进行可视化展示。

       Grafana是一个强大的数据可视化工具,允许用户创建仪表板,以直观地显示从Burrow收集的监控数据。通过配置Grafana,可以设置变量和图表,过滤集群并显示关键指标,如消费者滞后度、分区状态等。

       Kafka Manager是一个受欢迎的监控组件,使用Scala编写,提供源码下载。它支持管理多个Kafka集群、副本分配、创建和管理Topic等功能,但编译过程较为复杂,netdxf源码且在处理大型集群时资源消耗大。

       Kafka Eagle是一个由国人开发的监控工具,以其美观的界面和强大的数据展现能力受到推崇。它支持权限报警和多种报警方式,如钉钉、微信和邮件,还具备使用ksql查询数据的功能。

       Confluent Control Center是一个功能齐全的Kafka监控框架,集成了多种监控和管理功能,但需购买Confluent企业版才能使用。官方文档提供了快速启动指南,但安装过程较为繁琐,需要引入特定的Kafka版本及其相关服务。

       Kafka Monitor和Kafka Offset Monitor被认为是监控组件中的“炮灰”,具体信息不详。

       综上所述,这些组件提供了从不同角度监控Kafka系统的能力,包括消费者监控、资源管理、性能分析和数据可视化等。选择合适的监控工具时,需要考虑功能需求、资源消耗和集成难度等因素。

开源爱好者月刊(第 8 期):Apache 基金会的故事

       八月十六日星期天,有幸参加Apache Local Community在北京的首场Meetup活动,感受到“社区大于代码”、“国际舞台的身份转换”、“从使用者到参与者”以及“开源需要核心理念”的力量。活动结束时,与适兕老师和线上相识的字节开源法务大佬进行了交流。微软大厦的开放氛围让人印象深刻,只需简单扫健康码即可进入。

       回顾活动,ALC Beijing首场Meetup以“开源到底有多难?”为主题,为开源爱好者提供了一个深入探讨的平台。本月微栏从“Apache基金会的故事”出发,结合《所有人都看得见的体系源码工作:开源软件的铸造和维护》一书的推荐,完成了“月度之旅”。本刊以每月一刊的形式更新,借助GitHub、微信公众号、语雀和知乎等平台,旨在分享开源动态、投稿或推荐开源内容。

       Apache Software Foundation,一个在美国成立的非营利性公共慈善组织,致力于推动开源软件社区的发展。成立于年,起初由一群被称为“Apache Group”的人创建,主要支持和维护开源HTTPD Web服务器。阿帕奇这个名字源于对美洲原住民阿帕克民族的尊重。阿帕奇族以其出色的战争策略和耐力而闻名。随着开发人员小组的迅速壮大,他们很快成为了“Apache小组”。

       Apache基金会的组织架构旨在促进开源项目的治理和发展。组织包括理事会、项目团队、贡献者等角色,共同推动项目的前进。此外,该基金会还致力于维护和推广开源软件,促进全球开源社区的交流与合作。

       开源软件正逐渐成为企业发展的核心驱动力。开发人员倾向于使用开源平台,因为他们可以访问、修改代码并参与社区建设。企业应建立开源项目的治理结构,构建承诺的社区,从而推动项目的成功与商业化。开源不仅带来了速度优势,还提升了安全性,成为企业技术战略的重要组成部分。

       全球化时代要求开放的组织原则,这在早期文明中开始占据主导地位。从人类起源到工业革命,开放组织原则在全球决策、协作与包容性方面发挥了重要作用。然而,尽管全球化进程加速,仍存在一些包容性和协作性的挑战。

       开源软件的生产方面面临着问题,用户往往喜欢使用开源软件,但在贡献方面却有所犹豫。为开源项目贡献代码、修复错误或提供改进意见是推动开源生态系统发展的关键。成为开源项目负责人需要建立声誉和获得其他维护人员的支持,这可以通过启动新项目或在现有项目中积累经验来实现。

       GitHub、微软、谷歌和IBM加入开源安全基金会,展示了对开源安全的重视。持续交付基金会正式宣布Jenkins毕业,标志着Jenkins的成熟与社区承诺。JDK将搬迁至GitHub,为OpenJDK社区提供更多支持与资源。开源承担地震预警项目,展示了技术与开源合作的力量。

       Grafana Labs完成万美元的B轮融资,GitHub ReadMe项目旨在分享和强调开源故事,DIA通过代币销售筹集资金,推动开源DeFi数据平台的发展。第二届中国开源科学软件创意大赛火热进行,强调开源软件在科学研究中的价值。Gitee支持国内开源发展,展示了技术基础设施建设的重要性。

       开源软件许可证家族中的BSD许可证,对软件使用和分发施加了最低限制。允许源代码和二进制形式的重新分发,同时包括免责声明,保护了软件提供者的权益。

       在开源软件领域,Gitpod提供了浏览器上的协作式开发环境,Pyre-check作为高性能的Python类型检查器,PhotoDemon则是一款免费的Windows照片编辑器。Microsoft开源内容丰富,包括Visual Studio Code、TypeScript等知名项目,展示了其在开源领域的贡献。开源安全基金会加强行业合作,确保开源软件安全性。ZDNet开源专栏提供了更多洞察与建议,推荐《所有人都看得见的工作》一书,深入探讨了开源软件社区的动态。

       本刊每月更新,聚焦开源动态,提供知识共享的平台。欢迎通过GitHub Issue分享想法、新内容和推荐,共同构建更加繁荣的开源生态。

部署Kafka监控

       在Kafka部署过程中,监控系统的设置至关重要。本文将简述搭建Kafka监控的实践经验,包括所选工具和环境配置步骤。

       首先,确保Kafka实例在本地部署了三个实例,未使用Docker。监控方案选择了kafka_exporter、Prometheus和Grafana组合,详细选择理由可自行查阅网络资源。kafka_exporter在本地编译部署,因遇到go环境不匹配问题,最终选择源码编译,通过git克隆v1.7.0版本,设置goproxy以获取依赖库。编译过程中,对`go mod vendor`指令进行了修改,成功编译出kafka_exporter可执行文件,并针对多个Kafka实例制定了启动命令。

       同时,为了监控系统负载,部署了node-exporter在Docker中,确保其固定IP以方便Prometheus的配置。node-exporter的IP设为..0.2,端口为。

       接下来是Prometheus的部署。首先通过Docker拉取prom/prometheus镜像,配置文件中包含了Prometheus自身、node-exporter(.网段)和kafka_exporter(..0.1)的采集项。使用命令`docker run`启动Prometheus,监听端口,与node-exporter和kafka_exporter通信。

       Grafana的安装则在另一个目录B中进行,设置了读写权限后通过Docker拉取grafana/grafana镜像。部署时,Grafana容器的IP设为..0.4,监听端口。登录Grafana后,首先添加DataSource,指向Prometheus实例,然后导入官网提供的Linux系统模板(如、),Kafka监控模板(如),以及Prometheus模板()以设置Dashboard。

       总结,通过这些步骤,成功搭建了Kafka的监控系统,包括本地部署的kafka_exporter、Docker中的node-exporter和Prometheus,以及Grafana用于可视化监控数据。

基于Prometheus + Grafana搭建IT监控报警最佳实践(2)

       见字如面,大家好,我是小斐。延续前文,本文将深入探讨Prometheus和Grafana的监控体系。

       首先,我们需要打开Prometheus和Grafana进行操作,访问地址分别为:...:/ 和 ...:/。

       以node_exporter数据采集器为例,先确保其已安装于需要监控的主机。若要获取...主机的状态数据,需在该主机安装node_exporter采集器。

       在prometheus.yml中添加需要抓取的目标源信息,具体操作为:在scrape_configs下添加job_name,指定静态目标,添加...:目标。

       配置文件配置完成后,由于是静态的,需要重新加载配置文件,重启Prometheus以生效。

       在targets中查看是否已抓取到目标,根据上图可见,...的主机节点数据已抓取到。在Prometheus中验证数据正确性,点击blogs.com/weskynet/p/领取本地安装包,包括源码。

       解压Loki至本地后,根据文档配置文件。注意配置文件中的retention_period应为小时的整数倍。更多Loki配置信息,请参考grafana.com/docs/loki/l页面。

       启动Loki服务,推荐在控制台操作以确保稳定运行。启动命令为:xxx.exe --config.file=配置文件.yaml。若条件允许,您也可将Loki服务挂载到Windows中,方法参考另一篇文章,了解如何挂载Elasticsearch等至Windows服务。

       创建测试案例,使用基于.NET6的webapi服务。在此服务中,引用serilog包,并在appsetrings配置文件中添加日志输出配置,分别输出至控制台与Loki,并配置日志标签用于查询和规则匹配。

       在启动项内注册serilog日志服务,确保自动关联配置文件。在控制器中新增日志写入测试方法,注入日志服务,输出不同类型的日志。

       运行程序后,通过Swagger接口测试日志写入,控制台将显示日志输出。在Grafana中,通过数据源设置连接Loki,配置Loki部署地址(默认为本地),并测试连接成功。接下来,使用Explore菜单进行日志查询,预设查询区间,选择标签与标签值进行搜索,根据时间区间查询对应日志。同时,可以以Json形式查看日志,或进行关键字查询。

       如果您需要配套的安装包和源码,可扫描下方二维码,或搜索公众号Dotnet Dancer,回复Loki获取所有内容。本文至此结束,希望对您的日志管理与分析工作有所帮助。