【源码禁止自动返回】【财经源码】【vr源码】redis源码推荐

时间:2024-12-23 23:23:20 编辑:源码之家 手机模板 来源:pg电子游戏官网源码

1.redis7.0源码阅读:Redis中的码推IO多线程(线程池)
2.Redisson可重入锁加锁源码分析
3.Redis7.0源码阅读:哈希表扩容、缩容以及rehash
4.[redis 码推源码走读] maxmemory 数据淘汰策略
5.Redis 源码剖析 3 -- redisCommand
6.Redis 主从复制 - 源码梳理

redis源码推荐

redis7.0源码阅读:Redis中的IO多线程(线程池)

       Redis服务端处理客户端请求时,采用单线程模型执行逻辑操作,码推然而读取和写入数据的码推操作则可在IO多线程模型中进行。在Redis中,码推命令执行发生在单线程环境中,码推源码禁止自动返回而数据的码推读取与写入则通过线程池进行。一个命令从客户端接收,码推解码成具体命令,码推根据该命令生成结果后编码并回传至客户端。码推

       Redis配置文件redis.conf中可设置开启IO多线程。码推通过设置`io-threads-do-reads yes`开启多线程,码推同时配置`io-threads 2`来创建两个线程,码推其中一个是码推主线程,另一个为IO线程。码推在网络处理文件networking.c中,`stopThreadedIOIfNeeded`函数会判断当前需要执行的命令数是否超过线程数,若少于线程数,则不开启多线程模式,便于调试。

       要进入IO多线程模式,运行redis-server命令,然后在调试界面设置断点在networking.c的`readQueryFromClient`函数中。使用redis-cli输入命令时,可以观察到两个线程在运行,一个为主线程,另一个为IO线程。

       相关视频推荐帮助理解线程池在Redis中的应用,包括手写线程池及线程池在后端开发中的实际应用。学习资源包括C/C++ Linux服务器开发、后台架构师技术等领域,需要相关资料可加入交流群获取免费分享。

       在Redis中,IO线程池实现中,主要包括以下步骤:

       读取任务的处理通过`postponeClientRead`函数,判断是否启用IO多线程模式,将任务加入到待执行任务队列。

       主线程执行`postponeClientRead`函数,将待读客户端任务加入到读取任务队列。在多线程模式下,任务被添加至队列中,由IO线程后续执行。

       多线程读取IO任务`handleClientsWithPendingReadsUsingThreads`通过解析协议进行数据读取,财经源码与写入任务的多线程处理机制相似。

       多线程写入IO任务`handleClientsWithPendingWritesUsingThreads`包括判断是否需要启动IO多线程、负载均衡分配任务到不同IO线程、启动IO子线程执行写入操作、等待IO线程完成写入任务等步骤。负载均衡通过将任务队列中的任务均匀分配至不同的线程消费队列中,实现无锁化操作。

       线程调度部分包含开启和关闭IO线程的功能。在`startThreadedIO`中,每个IO线程持有锁,若主线程释放锁,线程开始工作,IO线程标识设置为活跃状态。而在`stopThreadedIO`中,若主线程获取锁,则IO线程等待并停止,IO线程标识设置为非活跃状态。

Redisson可重入锁加锁源码分析

       在分布式环境中,控制并发的关键往往需要分布式锁。Redisson,作为Redis的高效客户端,其源码清晰易懂,这里主要探讨Redisson可重入锁的加锁原理,以版本3..5为例,但重点是理解其核心逻辑,而非特定版本。

       加锁始于用户通过`redissonClient`获取RLock实例,并通过`lock`方法调用。这个过程最后会进入`RLock`类的`lock`方法,核心步骤是`tryAcquire`方法。

       `tryAcquire`方法中,首先获取线程ID,用于标识是哪个线程在请求锁。接着,尝试加锁的真正核心在`tryAcquireAsync`,它嵌套了`get`方法,这个get方法会阻塞等待异步获取锁的结果。

       在`tryAcquireAsync`中,如果锁的租期未设置,会使用默认的秒。脚本执行是加锁的核心,一个lua脚本负责保证命令的vr源码原子性。脚本中,`keys`和`argv`参数处理至关重要,尤其是判断哈希结构`_come`的键值对状态。

       脚本逻辑分为三个条件:如果锁不存在,会设置并设置过期时间;如果当前线程已持有锁,会增加重入次数并更新过期时间;若其他线程持有,加锁失败并返回剩余存活时间。加锁失败时,系统会查询锁的剩余时间,用于后续的重试策略。

       加锁成功后,会进行自动续期,通过`Future`监听异步操作结果。如果锁已成功获取且未设置过期时间,会定时执行`scheduleExpirationRenewal`,每秒检查锁状态,延长锁的存活时间。

       整个流程总结如下:首先通过lua脚本在Redis中创建和更新锁的哈希结构,对线程进行标识。若无过期时间,定时任务会确保锁的持续有效。重入锁通过`hincrby`增加键值对实现。加锁失败后,客户端会等待锁的剩余存活时间,再进行重试。

       至于加锁失败的处理,客户端会根据剩余存活时间进行阻塞,等待后尝试再次获取锁。这整个流程展现了Redisson可重入锁的简洁设计,主要涉及线程标识、原子操作和定时续期等关键点。

Redis7.0源码阅读:哈希表扩容、缩容以及rehash

       当哈希值相同发生冲突时,Redis 使用链表法解决,将冲突的键值对通过链表连接,但随着数据量增加,冲突加剧,查找效率降低。负载因子衡量冲突程度,负载因子越大,冲突越严重。为优化性能,医疗源码Redis 需适时扩容,将新增键值对放入新哈希桶,减少冲突。

       扩容发生在 setCommand 部分,其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。

       扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。

       哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。

       rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,减少冲突。dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。

       在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,彩38源码实现 rehash 结果的整合。

       综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。

[redis 源码走读] maxmemory 数据淘汰策略

       Redis 是一个内存数据库,通过配置 `maxmemory` 来限定其内存使用量。当 Redis 主库内存超出限制时,会触发数据淘汰机制,以减少内存使用量,直至达到限制阈值。

       当 `maxmemory` 配置被应用,Redis 会根据配置采用相应的数据淘汰策略。`volatile-xxx` 类型配置仅淘汰设置了过期时间的数据,而 `allkeys-xxx` 则淘汰数据库中所有数据。若 Redis 主要作为缓存使用,可选择 `allkeys-xxx`。

       数据淘汰时机发生在事件循环处理命令时。有多种淘汰策略可供选择,从简单到复杂包括:不淘汰数据(`noeviction`)、随机淘汰(`volatile-random`、`allkeys-random`)、采样淘汰(`allkeys-lru`、`volatile-lru`、`volatile-ttl`、`volatile-freq`)以及近似 LRU 和 LRU 策略(`volatile-lru` 和 `allkeys-lru`)。

       `noeviction` 策略允许读操作但禁止大多数写命令,返回 `oomerr` 错误,仅允许执行少量写命令,如删除命令 `del`、`hdel` 和 `unlink`。

       `volatile-random` 和 `allkeys-random` 机制相对直接,随机淘汰数据,策略相对暴力。

       `allkeys-lru` 策略根据最近最少使用(LRU)算法淘汰数据,优先淘汰最久未使用的数据。

       `volatile-lru` 结合了过期时间与 LRU 算法,优先淘汰那些最久未访问且即将过期的数据。

       `volatile-ttl` 策略淘汰即将过期的数据,而 `volatile-freq` 则根据访问频率(LFU)淘汰数据,考虑数据的使用热度。

       `volatile-lru` 和 `allkeys-lru` 策略通过采样来近似 LRU 算法,维护一个样本池来确定淘汰顺序,以提高淘汰策略的精确性。

       总结而言,Redis 的数据淘汰策略旨在平衡内存使用与数据访问需求,通过灵活的配置实现高效的数据管理。策略的选择应基于具体应用场景的需求,如数据访问模式、性能目标等。

Redis 源码剖析 3 -- redisCommand

       Redis 使用 redisCommand 结构体处理命令请求,其内包含一个指向对应处理函数的 proc 指针。redisCommandTable 是一个存储所有 Redis 命令的数组,位于 server.c 文件中。此数组通过 populateCommandTable() 函数填充,该函数将 redisCommandTable 的内容添加到 server.commands 字典,将 Redis 支持的所有命令及其实现整合。

       populateCommandTable() 函数中包含 populateCommandTableParseFlags() 子函数,用于将 sflags 字符串转换为对应的 flags 值。lookupCommand*() 函数族负责从 server.commands 中查找相应的命令。

Redis 主从复制 - 源码梳理

       本文主要剖析Redis主从复制机制中的核心组件之一——复制积压缓冲区(Replication Buffer),旨在为读者提供一个对Redis复制流程和缓冲区机制深入理解的平台,以下内容仅基于Redis版本7.0.,若读者在使用过程中发现偏差,欢迎指正。

       复制积压缓冲区在逻辑上可理解为一个容量最大的位整数,其初始值为1,由offset、master_repl_offset和repl_backlog-histlen三个变量共同决定缓冲区的有效范围。offset表示缓冲区内命令起始位置,master_repl_offset代表结束位置,二者之间的长度由repl_backlog-histlen表示。

       每当主节点执行写命令,新生成的积压缓冲区大小增加,同时增加master_repl_offset和repl_backlog-histlen的值,直至达到预设的最大容量(默认为1MB)。一旦所有从节点接收到命令并确认同步无误,缓冲区内过期的命令将被移除,并调整offset和histlen以维持积压区容量的稳定性。

       为实现动态分配,复制积压缓冲区被分解成多个block,以链表形式组织。每个block采用引用计数管理策略,初始值为0,每当增加或删除从节点对block的引用时,计数值相应增减。新生成block时,将master_repl_offset+1设置为block的repl_offset值,并将写入命令拷贝至缓冲区内,与此同时,master_repl_offset和repl_backlog-histlen增加。

       通过循环遍历所有从节点,为每个从节点设置ref_repl_buf_node指向当前block或最后一个block,确保主从复制能够准确传递命令。当主节点接收到从节点的连接请求时,将开始填充积压缓冲区。在全量复制阶段,从slave-replstate为WAIT_BGSAVE_START至ONLINE,表示redis从后台进程开始执行到完成RDB文件传输和加载,命令传播至此阶段正式开始。

       针对每个从节点,主节点从slave-ref_block_pos开始发送积压缓冲区内的命令,每发送成功,slave-ref_block_pos相应更新。当积压缓冲区超过预设阈值,即复制积压缓冲区中的有效长度超过repl-backlog-size(默认1MB)时,主节点将清除已发送的缓冲区,释放内存。如果主节点写入命令频繁或从节点断线重连时间长,则需合理调整缓冲区大小(推荐值为2 * second * write_size_per_second)以保持增量复制的稳定运行。

       当最后一个从节点与主节点的连接断开超过repl-backlog-ttl(默认为秒)时,主节点将释放repl_backlog和复制积压缓冲区以确保资源的有效使用。不过需要注意的是,从节点的释放操作依赖于节点是否可能成为新的主节点,因此在最后处理逻辑上需保持谨慎。

redis源码阅读--跳表解析

       跳表是 Redis 中实现 zset 和 set 功能的关键数据结构。通过在链表基础上构建多级索引,跳表有效提升了查找效率,且其实现相较于红黑树更为简洁,无需大量精力来维持树的平衡。跳表节点具有顺序排列的特性,支持范围查询。

       跳表的构成包括头结点、尾节点、长度以及索引层数。每一个节点包含数据 robj、分数 score 用于排序、上一节点指针 prev 用于反向遍历,以及多层索引信息 levels。各层索引 skiplistlevel 包括该层索引中节点指向的下一个节点指针 next 和间隔 span。节点的索引层数通过随机数生成,设计思路为使用第 n 级索引是使用第 n-1 级索引概率的 1/4,最多使用 级索引。使用如此设计可确保即便用到最高层级,所持数据量也足够大,无需担心索引不足。

       跳表按照 score 和 robj 的大小进行排序,因此节点有序,支持范围查找。插入节点时,首先找到新节点可以插入的位置,即比新节点小的最大节点。此过程从最高层索引开始,使用 update 数组记录各层索引中节点的前一节点位置,以及 rank 数组记录 update 节点到 header 的间隔 span。新节点插入后,更新 prev 指针、tail 指针、跳表长度等信息。

       删除节点同样遵循类似的逻辑,先查找节点的前一个节点,然后删除目标节点。在删除过程中,需要检查节点的下一节点是否为待删除数据,并调整节点连接和更新跳表的 level 值。当某层索引中节点的 next 指针变为 nil 时,该层索引已无用,可将 level 减一。最后,更新跳表长度。

       虽然跳表概念看似复杂,但通过理解其多级索引机制,其余操作如范围查询、排名查询等将变得相对简单。在实际应用中,可通过阅读 Redis 源码中的 t_zset.c 和 redis.h 文件,了解跳表的具体实现。然而,更难的是将这些抽象概念转化为清晰、易于理解的文档,绘制图表对于深入理解跳表的逻辑非常有帮助。

Redis源码阅读(1)——zmalloc

       zmalloc是一个简化内存分配的库,包含以下API函数:

       zmalloc

       zcalloc

       zrealloc

       zfree

       zstrdup

       zmalloc_used_memory

       zmalloc_set_oom_handler

       zmalloc_get_rss

       zmalloc_get_allocator_info

       zmalloc_get_private_dirty

       zmalloc_get_smap_bytes_by_field

       zmalloc_get_memory_size

       zlibc_free

       其中,zmalloc用于分配内存,zcalloc在分配内存的同时初始化为0,zrealloc用于重新分配内存,zfree用于释放内存,zstrdup用于复制字符串并分配内存,zmalloc_used_memory用于获取已分配内存的大小,zmalloc_set_oom_handler用于设置内存溢出处理器,zmalloc_get_rss用于获取当前进程的内存使用量,zmalloc_get_allocator_info用于获取分配器信息,zmalloc_get_private_dirty用于获取私有脏数据,zmalloc_get_smap_bytes_by_field用于获取指定字段的内存使用量,zmalloc_get_memory_size用于获取内存大小,zlibc_free用于释放内存。

       在zmalloc中,宏函数update_zmalloc_stat_alloc用于更新used_memory的值。这个宏函数中的if语句用于补齐分配的内存字节数到sizeof(long),但是我不太理解5.0源码中为什么atomicIncr使用的是__n而不是直接对_n进行操作。测试发现,used_memory的值并未对齐到8,那么if语句的存在意义何在呢?

       同样地,update_zmalloc_stat_free宏函数用于更新已释放内存的统计信息。与update_zmalloc_stat_alloc相比,虽然malloc_usable_size已经返回精确的字节数,但update_zmalloc_stat_alloc为何不直接使用atomicIncr更新used_memory呢?在Unstable分支中,已有开发者对此进行了优化。

Redis源码剖析之数据过期(expire)

       通过对线上数据访问时间分布的统计发现,大部分请求只访问最新分钟或1小时的数据,极少访问超过1天的数据。这使得我们在存储数据时可以优化过期时间,例如将过期时间从2天缩短到1天,从而节省大量 Redis 实例资源,节省内存使用量和成本。

       Redis 自动清理过期数据的机制可以有效节省资源,而没有自动过期机制时,实现数据清理将非常复杂。自动过期功能不仅简化了操作,还能节省成本,体现了其在缓存系统中的重要性。

       Redis 在处理请求时,会检查 key 是否过期。在 dictEntry 结构中存储了上次更新时间戳,通过比较当前时间与更新时间戳之间的差值与设定的过期时间,判断 key 是否过期。

       Redis 提供了懒惰删除功能,即在开启配置项后,会异步处理数据删除任务,防止阻塞主线程。然而,实际实现并非完全异步,而是结合了同步和异步机制,以优化性能。

       为了解决数据写入后长时间无访问导致的资源占用问题,Redis 实现了定期抽样删除策略。通过单线程执行的核心流程,Redis 无法长时间暂停执行其他工作,因此定期清理时仅做少量操作,以避免长时间阻塞。

       Redis 数据过期策略简单,但需考虑性能影响。配置过期时间应根据业务需求和数据特性调整,以实现最佳性能和资源利用。

       本文深入探讨了 Redis 过期数据的实现,包括实时清理、惰性删除和定期抽样删除策略。同时提供了 Redis 中文注释版和源码剖析专栏链接,欢迎关注和学习。如有帮助,欢迎一键三连支持。