【佳佳象棋源码】【织梦名片源码】【军师神助共振指标源码】36源码
1.apparmorSource code 源代码
2.游戏引擎随笔 0x36:UE5.x Nanite 源码解析之可编程光栅化(下)
3.怎么才能让BLOG横幅上的源码的字变大和改变颜色?
4.期货软件TB系统源代码解读系列36-R-Breaker系统
5.一个C语言题目?
apparmorSource code 源代码
AppArmor项目源代码在内核模块和用户空间工具之间进行分配。自2.6.版本起,源码AppArmor已整合进内核。源码
早期版本及兼容性补丁可在内核模块git树中获取。源码
欲获取AppArmor内核源码,源码请参照第8点提示。源码佳佳象棋源码
注意:master分支不稳定,源码会定期重构。源码发行版分支稳定,源码无需重构。源码
当前版本为AppArmor 2.5.1。源码
获取地址:[9]
md5值:bbffedab0d0b9dea8b
版本日志:[]
开发工具详情:[]
获取AppArmor开发工具指南:[]
游戏引擎随笔 0x:UE5.x Nanite 源码解析之可编程光栅化(下)
书接上回。源码
在展开正题之前,源码先做必要的源码铺垫,解释纳尼特(Nanite)技术方案中的源码Vertex Reuse Batch。纳尼特在软光栅路径实现机制中,将每个Cluster对应一组线程执行软光栅,每ThreadGroup有个线程。在光栅化三角形时访问三角形顶点数据,但顶点索引范围可能覆盖整个Cluster的个顶点,因此需要在光栅化前完成Cluster顶点变换。纳尼特将变换后的顶点存储于Local Shared Memory(LDS)中,进行组内线程同步,确保所有顶点变换完成,光栅化计算时直接访问LDS,实现软光栅高性能。
然而,在使用PDO(Masked)等像素可编程光栅化时,纳尼特遇到了性能问题。启用PDO或Mask时,可能需要读取Texture,织梦名片源码根据读取的Texel决定像素光栅化深度或是否被Discard。读取纹理需计算uv坐标,而uv又需同时计算重心坐标,增加指令数量,降低寄存器使用效率,影响Active Warps数量,降低延迟隐藏能力,导致整体性能下降。复杂材质指令进一步加剧问题。
此外,当Cluster包含多种材质时,同一Cluster中的三角形被重复光栅化多次,尤其是材质仅覆盖少数三角形时,大量线程闲置,浪费GPU计算资源。
为解决这些问题,纳尼特引入基于GPU SIMT/SIMD的Vertex Reuse Batch技术。技术思路如下:将每个Material对应的三角形再次分为每个为一组的Batch,每Batch对应一组线程,每个ThreadGroup有个线程,正好对应一个GPU Warp。利用Wave指令共享所有线程中的变换后的顶点数据,无需LDS,减少寄存器数量,增加Warp占用率,提升整体性能。
Vertex Reuse Batch技术的启用条件由Shader中的NANITE_VERT_REUSE_BATCH宏控制。
预处理阶段,纳尼特在离线时构建Vertex Reuse Batch,核心逻辑在NaniteEncode.cpp中的军师神助共振指标源码BuildVertReuseBatches函数。通过遍历Material Range,统计唯一顶点数和三角形数,达到顶点去重和优化性能的目标。
最终,数据被写入FPackedCluster,根据材质数量选择直接或通过ClusterPageData存储Batch信息。Batch数据的Pack策略确保数据对齐和高效存储。
理解Vertex Reuse Batch后,再来回顾Rasterizer Binning的数据:RasterizerBinData和RasterizerBinHeaders。在启用Vertex Reuse Batch时,这两者包含的是Batch相关数据,Visible Index实际指的是Batch Index,而Triangle Range则对应Batch的三角形数量。
当Cluster不超过3个材质时,直接从FPackedCluster中的VertReuseBatchInfo成员读取每个材质对应的BatchCount。有了BatchCount,即可遍历所有Batch获取对应的三角形数量。在Binning阶段的ExportRasterizerBin函数中,根据启用Vertex Reuse Batch的条件调整BatchCount,表示一个Cluster对应一个Batch。
接下来,遍历所有Batch并将其对应的Cluster Index、Triangle Range依次写入到RasterizerBinData Buffer中。启用Vertex Reuse Batch时,通过DecodeVertReuseBatchInfo函数获取Batch对应的三角形数量。对于不超过3个材质的Cluster,DecodeVertReuseBatchInfo直接从Cluster的VertReuseBatchInfo中Unpack出Batch数据,否则从ClusterPageData中根据Batch Offset读取数据。
在Binning阶段的AllocateRasterizerBinCluster中,还会填充Indirect Argument Buffer,奇思妙想指标源码将当前Cluster的Batch Count累加,用于硬件光栅化Indirect Draw的Instance参数以及软件光栅化Indirect Dispatch的ThreadGroup参数。这标志着接下来的光栅化Pass中,每个Instance和ThreadGroup对应一个Batch,以Batch为光栅化基本单位。
终于来到了正题:光栅化。本文主要解析启用Vertex Reuse Batch时的软光栅源码,硬件光栅化与之差异不大,此处略过。此外,本文重点解析启用Vertex Reuse Batch时的光栅化源码,对于未启用部分,除可编程光栅化外,与原有固定光栅化版本差异不大,不再详细解释。
CPU端针对硬/软光栅路径的Pass,分别遍历所有Raster Bin进行Indirect Draw/Dispatch。由于Binning阶段GPU中已准备好Draw/Dispatch参数,因此在Indirect Draw/Dispatch时只需设置每个Raster Bin对应的Argument Offset即可。
由于可编程光栅化与材质耦合,导致每个Raster Bin对应的Shader不同,因此每个Raster Bin都需要设置各自的PSO。对于不使用可编程光栅化的Nanite Cluster,即固定光栅化,为不降低原有性能,在Shader中通过两个宏隔绝可编程和固定光栅化的执行路径。
此外,Shader中还包括NANITE_VERT_REUSE_BATCH宏,实现软/硬光栅路径、Compute Pipeline、东方财富同花顺指标源码Graphics Pipeline、Mesh Shader、Primitive Shader与材质结合生成对应的Permutation。这部分代码冗长繁琐,不再详细列出讲解,建议自行阅读源码。
GPU端软光栅入口函数依旧是MicropolyRasterize,线程组数量则根据是否启用Vertex Reuse Batch决定。
首先判断是否使用Rasterizer Binning渲染标记,启用时根据VisibleIndex从Binning阶段生成的RasterizerBinHeaders和RasterizerBinData Buffer中获取对应的Cluster Index和光栅化三角形的起始范围。当启用Vertex Reuse Batch,这个范围是Batch而非Cluster对应的范围。
在软光栅中,每线程计算任务分为三步。第一步利用Wave指令共享所有线程中的Vertex Attribute,线程数设置为Warp的Size,目前为,每个Lane变换一个顶点,最多变换个顶点。由于三角形往往共用顶点,直接根据LaneID访问顶点可能重复,为确保每个Warp中的每个Lane处理唯一的顶点,需要去重并返回当前Lane需要处理的唯一顶点索引,通过DeduplicateVertIndexes函数实现。同时返回当前Lane对应的三角形顶点索引,用于三角形设置和光栅化步骤。
获得唯一顶点索引后,进行三角形设置。这里代码与之前基本一致,只是写成模板函数,将Sub Pixel放大倍数SubpixelSamples和是否背面剔除bBackFaceCull作为模板参数,通过使用HLSL 语法实现。
最后是光栅化三角形写入像素。在Virtual Shadow Map等支持Nanite的场景下,定义模板结构TNaniteWritePixel来实现不同应用环境下Nanite光栅化Pipeline的细微差异。
在ENABLE_EARLY_Z_TEST宏定义时,调用EarlyDepthTest函数提前剔除像素,减少后续重心坐标计算开销。当启用NANITE_PIXEL_PROGRAMMABLE宏时,可以使用此机制提前剔除像素。
最后重点解析前面提到的DeduplicateVertIndexes函数。
DeduplicateVertIndexes函数给每个Lane返回唯一的顶点索引,同时给当前Lane分配三角形顶点索引以及去重后的顶点数量。
首先通过DecodeTriangleIndices获取Cluster Local的三角形顶点索引,启用Cluster约束时获取所有Lane中最小的顶点索引,即顶点基索引。将当前三角形顶点索引(Cluster Local)减去顶点基索引,得到相对顶点基索引的局部顶点索引。
接下来生成顶点标志位集合。遍历三角形三个顶点,将局部顶点索引按顺序设置到对应位,表示哪些顶点已被使用。每个标志位是顶点的索引,并在已使用的顶点位置处设置为1。使用uint2数据类型,最多表示个顶点位。
考虑Cluster最多有个顶点,为何使用位uint2来保存Vertex Mask而非位?这是由于Nanite在Build时启用了约束机制(宏NANITE_USE_CONSTRAINED_CLUSTERS),该机制保证了Cluster中的三角形顶点索引与当前最大值之差必然小于(宏CONSTRAINED_CLUSTER_CACHE_SIZE),因此,生成的Triangle Batch第一个索引与当前最大值之差将不小于,并且每个Batch最多有个唯一顶点,顶点索引差的最大值为,仅需2个位数据即可。约束机制确保使用更少数据和计算。
将所有Lane所标记三个顶点的Vertex Mask进行位合并,得到当前Wave所有顶点位掩码。通过FindNthSetBit函数找出当前Lane对应的Mask索引,加上顶点基索引得到当前Lane对应的Cluster Local顶点索引。
接下来获取当前Lane对应的三角形的Wave Local的三个顶点索引,用于后续通过Wave指令访问其他Lane中已经计算完成的顶点属性。通过MaskedBitCount函数根据Vertex Mask以及前面局部顶点索引通过前缀求和得到当前Lane对应的Vertex Wave Local Index。
最后统计Vertex Mask所有位,返回总计有效的顶点数量。
注意FindNthSetBit函数,实现Lane与顶点局部索引(减去顶点基索引)的映射,返回当前Lane对应的Vertex Mask中被设置为1的位索引。如果某位为0,则返回下一个位为1的索引。如果Mask中全部位都设置为1,则实际返回为Lane索引。通过二分法逐渐缩小寻找索引范围,不断更新所在位置,最后返回找到的位置索引。
最后,出于验证目的进行了Vertex Reuse Batch的性能测试。在材质包含WPO、PDO或Mask时关闭Vertex Reuse Batch功能,与开启功能做对比。测试场景为由每颗万个三角形的树木组成的森林,使用Nsight Graphics进行Profiling,得到GPU统计数据如下:
启用Vertex Reuse Batch后,软光栅总计耗时减少了1.毫秒。SM Warp总占用率有一定提升。SM内部工作量分布更加均匀,SM Launch的总Warp数量提升了一倍。长短板Stall略有增加,但由于完全消除了由于LDS同步导致的Barrier Stall,总体性能还是有很大幅度的提升。
至此,Nanite可编程光栅化源码解析讲解完毕。回顾整个解析过程,可以发现UE5团队并未使用什么高深的黑科技,而是依靠引擎开发者强悍的工程实现能力完成的,尤其是在充分利用GPU SIMT/SIMD机制榨干机能的同时,保证了功能与极限性能的实现。这种能力和精神,都很值得我们学习。
怎么才能让BLOG横幅上的的字变大和改变颜色?
改变博客横幅标题字体大小颜色的源代码:调整博客横幅标题的字体大小和颜色可以使其显得更加突出。代码如下:
{
font-size:px;}
{
FILTER: glow(color=#,direction=2);}
{
color:#ffff;}
{
background:#transparent;filter:alpha(opacity=);border:0px solid #;}
代码解释:
font-size:px:设置标题文字的大小,可自行调整;
color=#:表示文字显示效果的颜色,可自行更改;
direction=2:表示光晕效果的强度,可根据个人喜好设置;
color:#ffff:为标题文字的主要颜色,可自由调节;
background:#transparent;filter:alpha(opacity=);border:0px solid #:设置文字及其外框的样式,背景颜色、透明度和边框粗细都可自定义。
具体操作步骤如下:
1. 进入控制面板,选择个人首页维护中的自定义空白面板,找到已有模块(如时钟、天气预报模块),勾选“显示源代码”,将上述代码复制粘贴到源代码末尾,保存修改。
2. 若新增面板,先点击控制面板,新增空白面板,敲空格键,勾选“显示源代码”,将代码粘贴到代码末尾,保存新增面板并进行个性化设置。
欢迎访问我的博客。
期货软件TB系统源代码解读系列-R-Breaker系统
R-Breaker系统是一种基于昨日价格的交易参考工具,它简化了Pivot Points,仅去除了一个枢轴点,交易策略基础是突破上界做多,下界做空。若做多后回撤至次上界,认为是假突破,应反手操作。以下是系统的核心代码和部分解释:参数设置:如notbef(9.)代表时间需大于0.,Notaft(.)表示时间需小于0.,其余参数如f1、f2、f3、reverse、rangemin和xdiv等用于计算关键价位。
变量声明:包括数值序列变量如ssetup、bsetup等,用于存储计算结果,以及布尔型变量rfilter,用于过滤操作。
代码执行逻辑:根据日期变化,计算当日开盘价的倍数作为参考区间。在特定时间范围内,如9点到2点分,根据市场波动判断是否突破区间进行买卖操作,同时考虑持仓状态和个人设置的条件。
警告:作者并未实际在实盘或超级图表上测试过此系统,认为在使用前需要根据个人市场分析和策略调整优化。
总的来说,R-Breaker系统是一个动态计算买卖点的工具,需要交易者根据市场状况灵活运用,并可能需要结合其他指标或个人判断进行调整。一个C语言题目?
递归,传入参数为未答题同学数k和当前总得分sum每次一位同学答题后k--,然后有四种选择使总分发生变化,即沿四个分支继续递归
递归终止条件为k==0,此时再判断sum是否为0即可
C语言代码和运行结果如下:
输出为,数学验证一下,总分为0只可能为:4个同学都选甲题,2对2错;
4个同学都选乙题,2对2错;2个同学选甲题,1对1错,另2个同学选乙题,1对1错
因此答案为:A(4,2)+A(4,2)+A(4,2)=,结果正确,望采纳~
附源码:
#include <stdio.h>
int ans = 0;
void dfs(int k, int sum) {
if (k == 0) { // 所有人都答题完毕
if (sum == 0)
ans++;
return;
}
dfs(k - 1, sum + ); // 选择甲题且答对
dfs(k - 1, sum - ); // 选择甲题且答错
dfs(k - 1, sum + ); // 选择乙题且答对
dfs(k - 1, sum - ); // 选择乙题且答错
}
int main() {
dfs(4, 0); // 一共4人,初始得分为0
printf("%d\n", ans);
return 0;
}