皮皮网

【kindle推送源码安装】【firefox下载网页源码】【班级官网源码】内存对比源码_内存对比源码怎么看

来源:领告软文源码 时间:2025-01-24 08:23:22

1.C++ の 内存管理(二)std::unique_ptr源码浅析
2.RocksDb 源码剖析 (1) | 如何混合 new 、内存内存mmap 设计高效内存分配器 arena ?对比对比
3.UE4源码剖析:MallocBinned(上)
4.linux内核源码:内存管理——内存分配和释放关键函数分析&ZGC垃圾回收

内存对比源码_内存对比源码怎么看

C++ の 内存管理(二)std::unique_ptr源码浅析

       本文主要阐述了C++标准库中的unique_ptr内存管理机制。unique_ptr通过RAII(Resource Acquisition Is Initialization)原理,源码源码提供了一种自动内存管理方式。内存内存其内部实现关键在于一个tuple,对比对比结合raw pointer和自定义deleter,源码源码kindle推送源码安装确保栈上指针生命周期结束后,内存内存自动释放堆内存。对比对比unique_ptr的源码源码独特之处在于它不可复制,只支持移动,内存内存确保内存所有权的对比对比单一性。

       unique_ptr的源码源码核心是__uniq_ptr_impl类,它实现了raw pointer的内存内存所有操作,包括获取raw pointer、对比对比接受用户自定义deleter。源码源码std::make_unique的源码直观展示了如何通过new操作内存分配,然后将新分配的内存传递给unique_ptr的构造函数,整个过程简洁明了。

       通过实例,我们可以看到unique_ptr在内存分配和释放上的优势。当使用make_unique时,它会调用new一次并分配内存,然后传递给unique_ptr,firefox下载网页源码这样就只需要构造和析构各一次,实现了高效和安全的内存管理。

       总结来说,unique_ptr是C++后引入的智能指针,它利用RAII封装内存管理,提供了在栈上对堆内存的自动释放功能,避免了内存泄漏问题。通过unique_ptr,开发者可以更放心地进行内存操作,无需担心析构细节。

RocksDb 源码剖析 (1) | 如何混合 new 、mmap 设计高效内存分配器 arena ?

       本文旨在深入剖析RocksDb源码,从内存分配器角度着手。RocksDb内包含MemoryAllocator和Allocator两大类内存分配器。MemoryAllocator作为基类,提供MemkindKmemAllocator和JemallocNodumpAllocator两个子类,分别集成memkind和jemalloc库的功能,实现内存分配与释放。

       接着,重点解析Allocator类及其子类Arena的实现。基类Allocator提供两个关键接口:内存分配与对齐。Arena类采用block为单位进行内存分配,班级官网源码先分配一个block大小的内存,后续满足需求时,优先从block中划取,以减少内存浪费。一个block的大小由kBlockSize参数决定。分配策略中,Arena通过两个指针(aligned_alloc_ptr_和unaligned_alloc_ptr_)分别管理对齐与非对齐内存,提高内存利用效率。

       分配内存时,Arena通过构造函数初始化成员变量,包括block大小、内存在栈上的分配与mmap机制的使用。构造函数内使用OptimizeBlockSize函数确保block大小合理,减少内存对齐浪费。Arena中的内存管理逻辑清晰,尤其在分配新block时,仅使用new操作,无需额外内存对齐处理。

       分配内存流程中,AllocateNewBlock函数直接调用new分配内存,而AllocateFromHugePage和AllocateFallback函数则涉及mmap机制的使用与内存分配策略的统一。这些函数共同构成了Arena内存管理的前台网页源码核心逻辑,实现了灵活高效地内存分配。

       此外,Arena还提供AllocateAligned函数,针对特定对齐需求分配内存。这一函数在使用mmap分配内存时,允许用户自定义对齐大小,优化内存使用效率。在处理对齐逻辑时,Arena巧妙地利用位运算优化计算过程,提高了代码效率。

       总结而言,RocksDb的内存管理机制通过Arena类实现了高效、灵活的内存分配与管理。通过深入解析其源码,可以深入了解内存对齐、内存分配与多线程安全性的实现细节,为开发者提供宝贵的内存管理实践指导。未来,将深入探讨多线程内存分配器的设计,敬请期待后续更新。

UE4源码剖析:MallocBinned(上)

       近期着手UE4项目开发,对UnrealEngine已久仰慕,如何下载spark源码终于得此机会深入探索。鉴于项目内存性能问题,决定从内存分配器着手,深入研读UE4源码。虽个人水平有限,尚不能全面理解,但愿借此机会揭开源码神秘面纱,让新手朋友们不再感到陌生。

       UE4内存分配器位于硬件抽象层HAL(Hardware Abstraction Layer)中。具体装箱内存分配器代码位于VS项目目录:UE4/Source/Runtime/Core/Private/HAL/MallocBinned。

       分析从ApplePlatformMemory::BaseAllocator开始,可发现Mac平台的默认分配器为MallocBinned,iOS的默认分配器为MallocAnsi。以下将重点分析MallocBinned。

       一、确定对齐方式

       FScopeLock用于局部线程锁,确保线程同步。关于Alignment的确定,通常使用默认值。默认值取决于内存对齐方式,此处默认对齐为8字节。

       二、确定有足够空间来内存对齐

       代码中,SpareBytesCount用于确认空间足够。若分配内存小于8字节,则按Alignment大小匹配箱体;若大于8字节,则按Size + Alignment - sizeof(FFreeMem)匹配箱体。

       三、确定箱体大小

       根据Size的大小,有三种不同的处理方式。k以下的内存分配采用装箱分配,PoolTable中包含个不同大小的池子。

       四、初始化内存池

       分析内存池初始化过程,主要工作包括:确定内存大小,分配内存块,设置内存池基本信息。

       五、内存装箱

       AllocateBlockFromPool从内存池中分配一个Block,实现内存装箱过程。

linux内核源码:内存管理——内存分配和释放关键函数分析&ZGC垃圾回收

       本文深入剖析了Linux内核源码中的内存管理机制,重点关注内存分配与释放的关键函数,通过分析4.9版本的源码,详细介绍了slab算法及其核心代码实现。在内存管理中,slab算法通过kmem_cache结构体进行管理,利用数组的形式统一处理所有的kmem_cache实例,通过size_index数组实现对象大小与kmem_cache结构体之间的映射,从而实现高效内存分配。其中,关键的计算方法是通过查找输入参数的最高有效位序号,这与常规的0起始序号不同,从1开始计数。

       在找到合适的kmem_cache实例后,下一步是通过数组缓存(array_cache)获取或填充slab对象。若缓存中有可用对象,则直接从缓存分配;若缓存已空,会调用cache_alloc_refill函数从三个slabs(free/partial/full)中查找并填充可用对象至缓存。在对象分配过程中,array_cache结构体发挥了关键作用,它不仅简化了内存管理,还优化了内存使用效率。

       对象释放流程与分配流程类似,涉及数组缓存的管理和slab对象的回收。在cache_alloc_refill函数中,关键操作是检查slab_partial和slab_free队列,寻找空闲的对象以供释放。整个过程确保了内存资源的高效利用,避免了资源浪费。

       总结内存操作函数概览,栈与堆的区别是显而易见的。栈主要存储函数调用参数、局部变量等,而堆用于存放new出来的对象实例、全局变量、静态变量等。由于堆的动态分配特性,它无法像栈一样精准预测内存使用情况,导致内存碎片问题。为了应对这一挑战,Linux内核引入了buddy和slab等内存管理算法,以提高内存分配效率和减少碎片。

       然而,即便使用了高效的内存管理算法,内存碎片问题仍难以彻底解决。在C/C++中,没有像Java那样的自动垃圾回收机制,导致程序员需要手动管理内存分配与释放。如果忘记释放内存,将导致资源泄漏,影响系统性能。为此,业界开发了如ZGC和Shenandoah等垃圾回收算法,以提高内存管理效率和减少内存碎片。

       ZGC算法通过分页策略对内存进行管理,并利用“初始标记”阶段识别GC根节点(如线程栈变量、静态变量等),并查找这些节点引用的直接对象。此阶段采用“stop the world”(STW)策略暂停所有线程,确保标记过程的准确性。接着,通过“并发标记”阶段识别间接引用的对象,并利用多个GC线程与业务线程协作提高效率。在这一过程中,ZGC采用“三色标记”法和“remember set”机制来避免误回收正常引用的对象,确保内存管理的精准性。

       接下来,ZGC通过“复制算法”实现内存回收,将正常引用的对象复制到新页面,将旧页面的数据擦除,从而实现内存的高效管理。此外,通过“初始转移”和“并发转移”阶段进一步优化内存管理过程。最后,在“对象重定位”阶段,完成引用关系的更新,确保内存管理过程的完整性和一致性。

       通过实测,ZGC算法在各个阶段展现出高效的内存管理能力,尤其是标记阶段的效率,使得系统能够在保证性能的同时,有效地管理内存资源。总之,内存管理是系统性能的关键因素,Linux内核通过先进的算法和策略,实现了高效、灵活的内存管理,为现代操作系统提供稳定、可靠的服务。