皮皮网
皮皮网
手机淘宝流量平台源码

【郑州溯源码燕窝礼品】【php源码变小程序】【测试指标源码大全】nsight编译源码_source insight编译代码

时间:2024-12-24 00:34:33 分类:知识 编辑:分享功能js源码
1.游戏引擎随笔 0x36:UE5.x Nanite 源码解析之可编程光栅化(下)
2.OpenGL - 教程 -调试图形学

nsight编译源码_source insight编译代码

游戏引擎随笔 0x36:UE5.x Nanite 源码解析之可编程光栅化(下)

       书接上回。编译t编

       在展开正题之前,源码译代先做必要的编译t编铺垫,解释纳尼特(Nanite)技术方案中的源码译代Vertex Reuse Batch。纳尼特在软光栅路径实现机制中,编译t编将每个Cluster对应一组线程执行软光栅,源码译代郑州溯源码燕窝礼品每ThreadGroup有个线程。编译t编在光栅化三角形时访问三角形顶点数据,源码译代但顶点索引范围可能覆盖整个Cluster的编译t编个顶点,因此需要在光栅化前完成Cluster顶点变换。源码译代纳尼特将变换后的编译t编顶点存储于Local Shared Memory(LDS)中,进行组内线程同步,源码译代确保所有顶点变换完成,编译t编光栅化计算时直接访问LDS,源码译代实现软光栅高性能。编译t编

       然而,在使用PDO(Masked)等像素可编程光栅化时,纳尼特遇到了性能问题。启用PDO或Mask时,可能需要读取Texture,根据读取的Texel决定像素光栅化深度或是否被Discard。读取纹理需计算uv坐标,而uv又需同时计算重心坐标,增加指令数量,降低寄存器使用效率,影响Active Warps数量,降低延迟隐藏能力,导致整体性能下降。复杂材质指令进一步加剧问题。

       此外,当Cluster包含多种材质时,php源码变小程序同一Cluster中的三角形被重复光栅化多次,尤其是材质仅覆盖少数三角形时,大量线程闲置,浪费GPU计算资源。

       为解决这些问题,纳尼特引入基于GPU SIMT/SIMD的Vertex Reuse Batch技术。技术思路如下:将每个Material对应的三角形再次分为每个为一组的Batch,每Batch对应一组线程,每个ThreadGroup有个线程,正好对应一个GPU Warp。利用Wave指令共享所有线程中的变换后的顶点数据,无需LDS,减少寄存器数量,增加Warp占用率,提升整体性能。

       Vertex Reuse Batch技术的启用条件由Shader中的NANITE_VERT_REUSE_BATCH宏控制。

       预处理阶段,纳尼特在离线时构建Vertex Reuse Batch,核心逻辑在NaniteEncode.cpp中的BuildVertReuseBatches函数。通过遍历Material Range,统计唯一顶点数和三角形数,达到顶点去重和优化性能的目标。

       最终,数据被写入FPackedCluster,根据材质数量选择直接或通过ClusterPageData存储Batch信息。Batch数据的Pack策略确保数据对齐和高效存储。

       理解Vertex Reuse Batch后,再来回顾Rasterizer Binning的数据:RasterizerBinData和RasterizerBinHeaders。在启用Vertex Reuse Batch时,这两者包含的测试指标源码大全是Batch相关数据,Visible Index实际指的是Batch Index,而Triangle Range则对应Batch的三角形数量。

       当Cluster不超过3个材质时,直接从FPackedCluster中的VertReuseBatchInfo成员读取每个材质对应的BatchCount。有了BatchCount,即可遍历所有Batch获取对应的三角形数量。在Binning阶段的ExportRasterizerBin函数中,根据启用Vertex Reuse Batch的条件调整BatchCount,表示一个Cluster对应一个Batch。

       接下来,遍历所有Batch并将其对应的Cluster Index、Triangle Range依次写入到RasterizerBinData Buffer中。启用Vertex Reuse Batch时,通过DecodeVertReuseBatchInfo函数获取Batch对应的三角形数量。对于不超过3个材质的Cluster,DecodeVertReuseBatchInfo直接从Cluster的VertReuseBatchInfo中Unpack出Batch数据,否则从ClusterPageData中根据Batch Offset读取数据。

       在Binning阶段的AllocateRasterizerBinCluster中,还会填充Indirect Argument Buffer,将当前Cluster的Batch Count累加,用于硬件光栅化Indirect Draw的Instance参数以及软件光栅化Indirect Dispatch的ThreadGroup参数。这标志着接下来的光栅化Pass中,每个Instance和ThreadGroup对应一个Batch,以Batch为光栅化基本单位。

       终于来到了正题:光栅化。本文主要解析启用Vertex Reuse Batch时的软光栅源码,硬件光栅化与之差异不大,此处略过。此外,本文重点解析启用Vertex Reuse Batch时的网吧特权源码成品光栅化源码,对于未启用部分,除可编程光栅化外,与原有固定光栅化版本差异不大,不再详细解释。

       CPU端针对硬/软光栅路径的Pass,分别遍历所有Raster Bin进行Indirect Draw/Dispatch。由于Binning阶段GPU中已准备好Draw/Dispatch参数,因此在Indirect Draw/Dispatch时只需设置每个Raster Bin对应的Argument Offset即可。

       由于可编程光栅化与材质耦合,导致每个Raster Bin对应的Shader不同,因此每个Raster Bin都需要设置各自的PSO。对于不使用可编程光栅化的Nanite Cluster,即固定光栅化,为不降低原有性能,在Shader中通过两个宏隔绝可编程和固定光栅化的执行路径。

       此外,Shader中还包括NANITE_VERT_REUSE_BATCH宏,实现软/硬光栅路径、Compute Pipeline、Graphics Pipeline、Mesh Shader、Primitive Shader与材质结合生成对应的Permutation。这部分代码冗长繁琐,不再详细列出讲解,建议自行阅读源码。

       GPU端软光栅入口函数依旧是MicropolyRasterize,线程组数量则根据是否启用Vertex Reuse Batch决定。

       首先判断是否使用Rasterizer Binning渲染标记,启用时根据VisibleIndex从Binning阶段生成的RasterizerBinHeaders和RasterizerBinData Buffer中获取对应的Cluster Index和光栅化三角形的起始范围。当启用Vertex Reuse Batch,灯塔龙凤线源码这个范围是Batch而非Cluster对应的范围。

       在软光栅中,每线程计算任务分为三步。第一步利用Wave指令共享所有线程中的Vertex Attribute,线程数设置为Warp的Size,目前为,每个Lane变换一个顶点,最多变换个顶点。由于三角形往往共用顶点,直接根据LaneID访问顶点可能重复,为确保每个Warp中的每个Lane处理唯一的顶点,需要去重并返回当前Lane需要处理的唯一顶点索引,通过DeduplicateVertIndexes函数实现。同时返回当前Lane对应的三角形顶点索引,用于三角形设置和光栅化步骤。

       获得唯一顶点索引后,进行三角形设置。这里代码与之前基本一致,只是写成模板函数,将Sub Pixel放大倍数SubpixelSamples和是否背面剔除bBackFaceCull作为模板参数,通过使用HLSL 语法实现。

       最后是光栅化三角形写入像素。在Virtual Shadow Map等支持Nanite的场景下,定义模板结构TNaniteWritePixel来实现不同应用环境下Nanite光栅化Pipeline的细微差异。

       在ENABLE_EARLY_Z_TEST宏定义时,调用EarlyDepthTest函数提前剔除像素,减少后续重心坐标计算开销。当启用NANITE_PIXEL_PROGRAMMABLE宏时,可以使用此机制提前剔除像素。

       最后重点解析前面提到的DeduplicateVertIndexes函数。

       DeduplicateVertIndexes函数给每个Lane返回唯一的顶点索引,同时给当前Lane分配三角形顶点索引以及去重后的顶点数量。

       首先通过DecodeTriangleIndices获取Cluster Local的三角形顶点索引,启用Cluster约束时获取所有Lane中最小的顶点索引,即顶点基索引。将当前三角形顶点索引(Cluster Local)减去顶点基索引,得到相对顶点基索引的局部顶点索引。

       接下来生成顶点标志位集合。遍历三角形三个顶点,将局部顶点索引按顺序设置到对应位,表示哪些顶点已被使用。每个标志位是顶点的索引,并在已使用的顶点位置处设置为1。使用uint2数据类型,最多表示个顶点位。

       考虑Cluster最多有个顶点,为何使用位uint2来保存Vertex Mask而非位?这是由于Nanite在Build时启用了约束机制(宏NANITE_USE_CONSTRAINED_CLUSTERS),该机制保证了Cluster中的三角形顶点索引与当前最大值之差必然小于(宏CONSTRAINED_CLUSTER_CACHE_SIZE),因此,生成的Triangle Batch第一个索引与当前最大值之差将不小于,并且每个Batch最多有个唯一顶点,顶点索引差的最大值为,仅需2个位数据即可。约束机制确保使用更少数据和计算。

       将所有Lane所标记三个顶点的Vertex Mask进行位合并,得到当前Wave所有顶点位掩码。通过FindNthSetBit函数找出当前Lane对应的Mask索引,加上顶点基索引得到当前Lane对应的Cluster Local顶点索引。

       接下来获取当前Lane对应的三角形的Wave Local的三个顶点索引,用于后续通过Wave指令访问其他Lane中已经计算完成的顶点属性。通过MaskedBitCount函数根据Vertex Mask以及前面局部顶点索引通过前缀求和得到当前Lane对应的Vertex Wave Local Index。

       最后统计Vertex Mask所有位,返回总计有效的顶点数量。

       注意FindNthSetBit函数,实现Lane与顶点局部索引(减去顶点基索引)的映射,返回当前Lane对应的Vertex Mask中被设置为1的位索引。如果某位为0,则返回下一个位为1的索引。如果Mask中全部位都设置为1,则实际返回为Lane索引。通过二分法逐渐缩小寻找索引范围,不断更新所在位置,最后返回找到的位置索引。

       最后,出于验证目的进行了Vertex Reuse Batch的性能测试。在材质包含WPO、PDO或Mask时关闭Vertex Reuse Batch功能,与开启功能做对比。测试场景为由每颗万个三角形的树木组成的森林,使用Nsight Graphics进行Profiling,得到GPU统计数据如下:

       启用Vertex Reuse Batch后,软光栅总计耗时减少了1.毫秒。SM Warp总占用率有一定提升。SM内部工作量分布更加均匀,SM Launch的总Warp数量提升了一倍。长短板Stall略有增加,但由于完全消除了由于LDS同步导致的Barrier Stall,总体性能还是有很大幅度的提升。

       至此,Nanite可编程光栅化源码解析讲解完毕。回顾整个解析过程,可以发现UE5团队并未使用什么高深的黑科技,而是依靠引擎开发者强悍的工程实现能力完成的,尤其是在充分利用GPU SIMT/SIMD机制榨干机能的同时,保证了功能与极限性能的实现。这种能力和精神,都很值得我们学习。

OpenGL - 教程 -调试图形学

       图形编程的确能带来乐趣,但错误的渲染或完全未渲染都会让人沮丧。在与像素打交道时,找到问题源头往往困难重重。与CPU调试不同,OpenGL调试没有控制台输出,不能在GLSL代码中设置断点,也无法检查GPU运行状态。下面介绍一些调试OpenGL程序的技巧,这些技巧将大大帮助你解决问题。

       首先,了解OpenGL中的用户错误标记。当你使用OpenGL不当(例如在绑定之前配置缓冲)时,它会检测到错误,并在幕后生成用户错误标记。通过调用glGetError()函数,可以查询这些错误标记并返回错误值。例如,glBindTexture()函数的文档中列出了所有可能生成的用户错误代码。

       值得注意的是,glGetError()在每次调用后会清除所有错误标记,因此在循环中调用该函数以检查每帧可能的错误更为合适。在分布式系统(如X)中,glGetError()只会清除一个错误代码标记,这意味着在多次调用之间可能有多个错误发生。

       利用glGetError()定位错误来源非常有效,通过在代码中各处调用它,可以快速确定OpenGL错误的源头。此外,可以编写辅助函数将错误代码与错误发生的位置(使用预处理器指令__FILE__和__LINE__)结合打印出来,便于追踪错误。

       对于OpenGL 4.3及以上版本,可以使用调试输出拓展,它直接将更详细的信息发送给用户,有助于使用调试器捕捉错误源头。在GLFW中请求调试输出非常简单,只需要在创建窗口之前设置提醒。调试输出上下文启用后,每次不正确的OpenGL指令都会提供大量有用的错误信息。

       利用调试输出,可以很容易地找到错误发生的准确行号或调用。通过在特定错误类型或函数顶部设置断点,调试器在抛出错误时捕捉信息,帮助快速定位问题。此外,可以使用glDebugMessageInsert()函数自定义错误输出,方便与使用调试输出的程序或OpenGL代码协同开发。

       对于GLSL着色器,虽然无法直接使用如glGetError()的函数,但可以利用输出变量到帧缓冲的颜色通道来快速检查着色器代码的正确性。通过观察视觉结果,可以快速识别变量是否显示了正确的值。这种方法适用于检查法向量、纹理等变量是否正确传递。

       确保你的着色器代码符合GLSL规范,可以使用OpenGL GLSL参考编译器进行检查。下载可执行版本或完整源码,将着色器文件作为参数传递,编译器会报告任何规范不符合的情况。

       显示帧缓冲的内容是调试的一个好方法,特别是当帧缓冲在幕后运行时。通过简单的着色器编写一个助手函数,可以在屏幕右上角快速显示任何纹理,以便检查帧缓冲输出。这种方法能让你对帧缓冲内容保持持续反馈。

       在遇到上述方法无法解决问题时,可以使用第三方调试软件。这些工具通常可以注入OpenGL驱动,拦截各种OpenGL调用,提供大量有用的数据,如性能测试、缓冲内存检查、纹理和帧缓冲附件显示等。适合大规模产品代码开发。

       推荐的调试工具包括gDebugger、RenderDoc、CodeXL、NVIDIA Nsight等,它们在不同方面提供强大支持。每款工具都有其优点和适用场景,选择最适合你需求的工具。

本文地址:http://04.net.cn/html/94e385896047.html

copyright © 2016 powered by 皮皮网   sitemap