皮皮网

【股票klm指标公式源码】【python源码文件】【久草源码】内源码

时间:2025-01-24 01:35:36 来源:反码源码转换器

1.简单概括Linux内核源码高速缓存原理(例解析)
2.从Linux内核源码的内源码角度深入解释进程(图例解析)
3.剖析Linux内核源码解读之《实现fork研究(一)》
4.一文深入了解Linux内核源码pdflush机制

内源码

简单概括Linux内核源码高速缓存原理(例解析)

       高速缓存(cache)概念和原理涉及在处理器附近增加一个小容量快速存储器(cache),基于SRAM,内源码由硬件自动管理。内源码其基本思想为将频繁访问的内源码数据块存储在cache中,CPU首先在cache中查找想访问的内源码数据,而不是内源码股票klm指标公式源码直接访问主存,以期数据存放在cache中。内源码

       Cache的内源码基本概念包括块(block),CPU从内存中读取数据到Cache的内源码时候是以块(CPU Line)为单位进行的,这一块块的内源码数据被称为CPU Line,是内源码CPU从内存读取数据到Cache的单位。

       在访问某个不在cache中的内源码block b时,从内存中取出block b并将block b放置在cache中。内源码放置策略决定block b将被放置在哪里,内源码而替换策略则决定哪个block将被替换。内源码

       Cache层次结构中,Intel Core i7提供一个例子。cache包含dCache(数据缓存)和iCache(指令缓存),解决关键问题包括判断数据在cache中的python源码文件位置,数据查找(Data Identification),地址映射(Address Mapping),替换策略(Placement Policy),以及保证cache与memory一致性的问题,即写入策略(Write Policy)。

       主存与Cache的地址映射通过某种方法或规则将主存块定位到cache。映射方法包括直接(mapped)、全相联(fully-associated)、一对多映射等。直接映射优点是地址变换速度快,一对一映射,替换算法简单,但缺点是容易冲突,cache利用率低,命中率低。全相联映射的优点是提高命中率,缺点是硬件开销增加,相应替换算法复杂。久草源码组相联映射是一种特例,优点是提高cache利用率,缺点是替换算法复杂。

       cache的容量决定了映射方式的选取。小容量cache采用组相联或全相联映射,大容量cache采用直接映射方式,查找速度快,但命中率相对较低。cache的访问速度取决于映射方式,要求高的场合采用直接映射,要求低的场合采用组相联或全相联映射。

       Cache伪共享问题发生在多核心CPU中,两个不同线程同时访问和修改同一cache line中的不同变量时,会导致cache失效。解决伪共享的方法是避免数据正好位于同一cache line,或者使用特定宏定义如__cacheline_aligned_in_smp。Java并发框架Disruptor通过字节填充+继承的方式,避免伪共享,象棋棋子源码RingBuffer类中的RingBufferPad类和RingBufferFields类设计确保了cache line的连续性和稳定性,从而避免了伪共享问题。

从Linux内核源码的角度深入解释进程(图例解析)

       进程,作为操作系统的基本概念,是程序执行过程的体现,自计算机诞生以来,其工作原理沿用冯诺依曼架构。从代码编译生成的可执行文件在特定环境中加载到内存,便构成了一个执行中的进程。进程的生命周期涉及启动、状态转换、执行和退出等阶段。在Linux中,进程的创建始于fork调用,通过复制当前进程生成新进程,接着通过exec初始化新进程地址空间,进入就绪状态等待调度。

       进程在操作系统中被抽象为task_struct,指针扫描源码这个庞大的结构体,即进程描述符,记录了进程的全部属性和操作,包括进程ID(pid)和状态。查看进程ID和父进程ID可以通过特定命令。状态字段通过long类型表示,其他细节可以通过源码深入探究。

       创建进程涉及fork和copy_process函数,fork仅复制轻量级信息,使用写时复制技术避免数据冲突。fork后的子进程在必要时通过exec开始独立执行。在Linux中,线程和进程本质上是相同的,区别在于资源的共享程度。

       进程调度采用抢占式策略,如CFS(完全公平调度)通过虚拟运行时来实现公平调度,通过时间记账和红黑树组织队列来高效选择进程。进程退出时,会清理资源并可能转化为孤儿进程,由特定进程接管。理解这些原理有助于深入理解Linux内核对进程的管理机制。

剖析Linux内核源码解读之《实现fork研究(一)》

       Linux内核源码解析:深入探讨fork函数的实现机制(一)

       首先,我们关注的焦点是fork函数,它是Linux系统创建新进程的核心手段。本文将深入剖析从用户空间应用程序调用glibc库,直至内核层面的具体过程。这里假设硬件平台为ARM,使用Linux内核3..3和glibc库2.版本。这些版本的库和内核代码可以从ftp.gnu.org获取。

       在glibc层面,针对不同CPU架构,进入内核的步骤有所不同。当glibc准备调用kernel时,它会将参数放入寄存器,通过软中断(SWI) 0x0指令进入保护模式,最终转至系统调用表。在arm平台上,系统调用表的结构如下:

       系统调用表中的CALL(sys_clone)宏被展开后,会将sys_clone函数的地址放入pc寄存器,这个函数实际由SYSCALL_DEFINEx定义。在do_fork函数中,关键步骤包括了对父进程和子进程的跟踪,以及对子进程进行初始化,包括内存分配和vfork处理等。

       总的来说,调用流程是这样的:应用程序通过软中断触发内核处理,通过系统调用表选择并执行sys_clone,然后调用do_fork函数进行具体的进程创建操作。do_fork后续会涉及到copy_process函数,这个函数是理解fork核心逻辑的重要入口,包含了丰富的内核知识。在后续的内容中,我将深入剖析copy_process函数的工作原理。

一文深入了解Linux内核源码pdflush机制

       在进程安全监控中,遇到进程长时间处于不可中断的睡眠状态(D状态,超过8分钟),可能导致系统崩溃。这种情况下,涉及到Linux内核的pdflush机制,即如何将内存缓存中的数据刷回磁盘。pdflush线程的数量可通过/proc/sys/vm/nr_pdflush_threads调整,范围为2到8个。

       当内存不足或需要强制刷新时,脏页的刷新会通过wakeup_pdflush函数触发,该函数调用background_writeout函数进行处理。background_writeout会监控脏页数量,当超过脏数据临界值(脏背景比率,通过dirty_background_ratio调整)时,会分批刷磁盘,直到比率下降。

       内核定时器也参与脏页刷新,启动wb_timer定时器,周期性地检查脏页并刷新。系统会在脏页存在超过dirty_expire_centisecs(可以通过/proc/sys/vm/dirty_expire_centisecs设置)后启动刷新。用户态的WRITE写文件操作也会触发脏页刷新,以平衡脏页比率,避免阻塞写操作。

       总结系统回写脏页的三种情况:定时器触发、内存不足时分批写、写操作触发pdflush。关键参数包括dirty_background_ratio、dirty_expire_centisecs、dirty_ratio和dirty_writeback_centisecs,它们分别控制脏数据比例、回写时间、用户自定义回写和pdflush唤醒频率。

       在大数据项目中,写入量大时,应避免依赖系统缓存自动刷回,尤其是当缓存不足以满足写入速度时,可能导致写操作阻塞。在逻辑设计时,应谨慎使用系统缓存,对于对性能要求高的场景,建议自定义缓存,同时在应用层配合使用系统缓存以优化高楼贴等特定请求的性能。预读策略是提升顺序读性能的重要手段,Linux根据文件顺序性和流水线预读进行优化,预读大小通过快速扩张过程动态调整。

       最后,注意pread和pwrite在多线程io操作中的优势,以及文件描述符管理对性能的影响。在使用pread/pwrite时,即使每个线程有自己的文件描述符,它们最终仍作用于同一inode,不会额外提升IO性能。

推荐资讯
江西发布春节采购年货消费提示

江西发布春节采购年货消费提示

hdfsbolt 源码

hdfsbolt 源码

cdatabase源码

cdatabase源码

5566源码

5566源码

神舟十七号载人飞船发射取得圆满成功

神舟十七号载人飞船发射取得圆满成功

源码keysyuanm

源码keysyuanm

copyright © 2016 powered by 皮皮网   sitemap