【股票分享源码分析】【arm网关源码】【源码资源打包】向量源码_向量代码

时间:2025-01-24 06:41:12 来源:官网模板 源码 编辑:ts封装源码

1.LIBSVM使用手册
2.从零开始构建向量数据库:Milvus 的向量向量源码编译安装(一)
3.VGGish源码学习
4.Bert是如何得到句向量和词向量的
5.实战 向量数据库选型参考
6.音频向量:VGGish(Pytorch)

向量源码_向量代码

LIBSVM使用手册

       LibSVM是一种开源的支持向量机(SVM)软件包,提供源代码和可执行文件两种形式。源码针对不同操作系统,代码用户需按照以下步骤操作:

       1)准备数据集,向量向量按照LibSVM要求的源码格式。

       2)对数据进行简单缩放,代码股票分享源码分析以便在训练过程中更有效地处理。向量向量

       3)考虑选用RBF核函数,源码它在处理非线性问题时表现优异。代码

       4)通过交叉验证选择最佳参数C和g,向量向量以优化模型性能。源码

       5)使用最佳参数C和g对整个训练集进行支持向量机模型训练。代码

       6)利用训练好的向量向量模型进行测试和预测。

       LibSVM使用的源码数据格式包括目标值和特征值,格式简洁且易于理解和操作。代码训练数据文件包含目标值和特征值,检验数据文件仅用于计算准确度或误差。

       Svmtrain命令用于训练模型,支持多种参数设置,包括SVM类型、核函数类型、参数值等。例如,训练一个C-SVC分类器时,可使用参数设置:svmtrain [options] training_set_file [model_file]。

       Svmpredict命令用于使用已有模型进行预测,其用法为:svmpredict test_file model_file output_file。

       SVMSCALE工具用于对数据集进行缩放,目的是避免特征值范围过大或过小,防止在训练过程中出现数值计算困难。缩放规则可以保存为文件,arm网关源码便于后续使用。

       LibSVM提供了一个实用的训练数据实例:heart_scale,用于参考数据文件格式和练习软件操作。用户还可以编写小程序将常用数据格式转换为LibSVM要求的格式。

       总之,LibSVM提供了全面的支持向量机模型训练与预测工具,用户需按照文档指导准备数据、设置参数、训练模型和进行预测。LibSVM的灵活性和高效性使其在数据挖掘、机器学习等领域得到广泛应用。

扩展资料

       LIBSVM是台湾大学林智仁(Lin Chih-Jen)副教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件包可在http://www.csie.ntu.edu.tw/~cjlin/免费获得。该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式识别问题。

从零开始构建向量数据库:Milvus 的源码编译安装(一)

       在知乎上新开了关于“向量数据库”内容的专栏[1],本文将详细介绍如何在x和ARM架构的Linux系统上编译安装开源项目Milvus,这个项目由Linux Foundation AI & Data基金会支持,常与Weaviate和Elasticsearch相提并论[2][3]。

       由于Milvus主要在GitHub进行开发,中文网络中关于编译安装的源码资源打包教程很少,且大多是过时的1.x版本资料,而Milvus的版本迭代迅速,目前主要提供Docker容器安装,本地开发者或追求透明度的开发者可能会觉得不够友好。本文将从头开始,逐步引导你进行编译安装。

       前置准备

       在开始前,需要确保操作系统、开发环境和必要的依赖已经准备妥当。Linux作为主力生产环境,本文将重点介绍在Ubuntu上编译。macOS和Windows上的步骤类似,但这里主要针对Linux。

       操作系统

       推荐使用Ubuntu,无论是服务器、容器基础镜像,还是个人笔记本。具体配置和安装细节可以参考我在其他文章中介绍的《笔记本上搭建Linux学习环境》[6]。

       开发环境

       Milvus主要使用Golang编写,同时包含C++代码。确保Golang和C++环境可用,参考《搭建Golang开发环境》[8],并注意Milvus官方推荐的版本。

       源码获取

       获取Milvus源码有两种方式:Git Clone或下载压缩包,其中Git Clone可能需要借助国内镜像加速。具体步骤包括设置代码仓库的上游,确保代码同步。

       编译基础依赖

       项目依赖OpenBLAS加速向量计算,详细安装步骤在《走进向量计算:OpenBLAS编译》[]中有详述。

       准备构建依赖:cmake

       确保cmake版本至少为3.,v语言源码Ubuntu .需手动安装,而Ubuntu .可直接使用apt。不同版本可能有差异,注意官方文档推荐的版本。

       额外依赖:clang-format和clang-tidy

       项目代码中需要clang-format和clang-tidy,Ubuntu .和.的安装方式各有不同,务必安装正确版本以保持和官方构建一致。

       编译 Milvus

       切换到 Milvus 代码目录,执行make命令编译。整个过程可能耗时,但完成后将在./bin/目录下找到可执行文件。

       总结

       本文详细介绍了在Ubuntu .和.环境中编译安装Milvus的步骤,包括操作系统、开发环境和依赖的安装。后续文章将深入探讨容器镜像构建优化以及在MacOS上的安装指南。

       期待你的反馈,如果觉得有用,请点赞和分享。如有任何问题或需要更新,请关注后续内容更新,感谢支持!

VGGish源码学习

       深入研究VGGish源码,该模型在模态视频分析领域颇为流行,尤其在生成语音部分的embedding特征向量方面。本文旨在基于官方源码进行学习。

       VGGish的代码库结构简洁,仅包含几个.py文件。文件大体功能明确,下文将结合具体代码进行详述。在开始之前,996传奇源码需要预先下载两个预训练文件,与.py文件放在同一目录。

       VGGish的环境安装过程简便,对依赖包的版本要求宽松。只需依次执行安装命令,确保环境配置无误。运行vggish_smoke_test.py脚本,如显示"Looks Good To Me"则表明环境已搭建完成。

       着手VGGish模型的拆解,以vggish_inference_demo.py中的main函数为起点,分为两大部分:数据准备与前向推理获得Embedding特征及特征后处理。

       在数据准备阶段,首先确认输入是否为.wav文件,若非则自行生成。接着,使用vggish_input.py模块将输入数据调整为适用于模型的batch格式。假设输入音频长1分秒,采样频率为.1kHz,读取的wav_data为(,)的一维数组(若为双声道,则调整为单声道)。

       进入前向推理阶段,初始化特征处理对象pproc及记录器对象writer。通过vggish_slim.py模块构建VGG模型,并加载预训练权重。前向推理生成维的embedding特征向量。值得注意的是,输入数据为[num_samples, , ]的三维数据,在推理过程中会增加一维[num_samples,num_frames,num_bins,1],最终经过卷积层提取特征,FC层压缩,得到的embedding_batch为[num_samples,]。

       后处理环节中,应用PCA(主成分分析)对embedding特征进行调整。这一步骤旨在与YouTube-8M项目兼容,后者已发布用于数百万YouTube视频的PCA/whitened/quantized格式的音频和视觉嵌入。不过,若无需使用官方发布的AudioSet嵌入,则可直接使用网络输出的原始嵌入,无需进行PCA操作。

       本文旨在为读者提供深入理解VGGish源码的路径,通过详述模型的构建、安装与应用过程,旨在促进对模态视频分析技术的深入学习与应用。

Bert是如何得到句向量和词向量的

       本文深入探讨了Bert预训练模型如何生成输入句子的句向量和词向量。在HuggingFace的BERT源码中,BertModel类承担着这一关键角色。其作用在于接收经过padding对齐后的token_id(bert_inputs/input_ids)和表示哪些token_id需要被mask的attention_mask,进而生成句子的句向量和词向量。

       在BertModel类的架构中,通过一系列组件如get_extended_attention_mask()、BertEmbedding、BertEncoder和BertPooler进行紧密串联,最终为每个输入句子生成了包含丰富信息的向量表示。具体而言,BertModel的内部结构由这些核心组件共同协作,确保了模型能够准确捕捉文本的语义特征。

       其中,get_extended_attention_mask()函数对输入的attention_mask进行特殊转换,将1和0分别映射为0和-,以增强模型对未被mask的token的注意力,同时削弱被mask token的影响。这一操作对于确保模型准确理解和处理输入文本至关重要。

       BertEmbeddings类负责将输入的token_id与预定义的embedding(包括token embedding、token type embedding和position embedding)进行融合,形成多维度的embedding_output。这一过程通过层规范化和Dropout操作进一步增强向量的表示能力,确保了输入数据在通过后续层处理时的稳定性和泛化能力。

       BertEncoder类则通过串联多个BertLayer,实现了对文本序列的多层编码。每个BertLayer通过自注意力机制(Self-Attention)对输入序列进行特征提取,构建出多层次的语义表示。在BertEncoder中,每个BertLayer的输出与下一个BertLayer的输入结合,最终生成包含多个层次信息的hidden_states,为文本理解提供丰富的上下文依赖。

       最后,BertPooler组件从sequence_output中提取出表示整个句子的向量,即通过取出第0个token(CLS)的向量表示,经过线性变换和激活函数后输出,得到pooled_output。这一输出不仅包含了句子的全局特征,还承载了对句子整体语义的概括,为后续任务如文本分类、命名实体识别等提供了强有力的输入基础。

       综上所述,BertModel类通过精心设计的组件协作,有效地将输入文本转换为句向量和词向量,为自然语言处理任务提供了高效、强大的表示能力。

实战 向量数据库选型参考

       在实施大型模型的过程中,特别是在应用RAG增强检索生成时,向量数据库的选择至关重要。本文通过实验对比了四个常见的向量数据库:Chroma、Faiss、Weaviate和Pinecore。未来计划在时间和精力允许的情况下,追加Milvus和Qdrant的实验。

       实验中选用的模型要求较小,以减少空间占用,便于本地调试。从Huggingface上选择了名为all-MiniLM-L6-v2的模型,其维度为。

       HuggingFace上的模型all-MiniLM-L6-v2无法直接下载。可以通过以下两种方式之一下载模型:从摩搭(ModelScope)平台下载,或从HF-Mirror下载。

       Chroma向量数据库采用SQLite作为基础,通过乘积量化技术和k-means聚类优化查询和压缩数据,以节约空间和提高查询效率。实验中,使用Python语言将文本块以Embedding向量的形式存入Chroma数据库,并基于查询文本进行相似度搜索,找到top K个相似结果。

       通过实验发现,SentenceTransformer的Model基于BertModel,分词器使用BertTokenizer。检索器(Retriever)通过invoke()方法进行相关性搜索,默认使用欧拉距离计算相似度。

       FAISS是Facebook AI Research的开源数据库。实验场景与Chroma相同,源码也类似。结果显示符合预期,Langchain框架的检索器Retriever对向量数据库的相似度检索默认使用欧拉距离。

       Pinecone是云向量数据库,通过apiKey接入。实验中,通过两种方式使用Pinecone向量库:通过Database->Indexes提前创建向量库,或直接在源代码中创建向量库。

       Weaviate的文档相对完善,主要用于AI应用开发平台Dify。实验中,注意Weaviate版本需高于v1.,否则无法使用grpc服务。实验场景与之前类似,通过Weaviate的GraphQL实现相关度查询。

       调研并深度使用了四种常见的向量数据库:Chroma、Faiss、Pinecone、Weaviate,并对它们进行了多维度对比。

音频向量:VGGish(Pytorch)

       音频向量技术中,谷歌的VGGish模型凭借AudioSet大型数据集而声名鹊起。然而,将VGGish移植到Pytorch框架并非易事,尽管Tensorflow官方提供了相关的源代码和模型接口,但实际操作中往往遇到不便且结果与预期有差异。Towhee为解决这一问题提供了更为便捷的音频向量接口,其audio-embedding-vggish pipeline内置了torch-vggish,使得Pytorch用户能够轻松获取音频特征向量,且搜索性能得到保障。

       Towhee的音频向量实现基于Tensorflow VGGish的原理,通过torch-vggish算子,它重新构建并加载了VGGish的预处理代码,包括mel特征提取和模型输入处理。构建模型时,可以参考vggish_slim.py中的分层结构,使用torch.nn模块进行搭建。对于音频相似搜索,推荐去掉模型的ReLU层,而如果用于分类任务,则推荐使用原始模型结构。

       加载权重的过程是关键步骤,首先从原始模型文件获取VGGish变量数据,然后需要将weights和biases转换为Pytorch的Tensor。torch-vggish提供了预处理好的vggish.pth模型参数文件,通过加载这些权重,即可在Pytorch框架中无缝使用VGGish模型进行音频向量计算。

copyright © 2016 powered by 皮皮网   sitemap