robust Դ?????
三维点云技术在自动驾驶、机器人和增强现实等领域得到广泛应用。分析近年来,源码随着深度学习的分析发展,3D点云技术成为计算机视觉研究的源码热点,面临数据获取、分析影视源码frenken处理、源码分析和应用的分析挑战。学姐整理了近三年各大顶会中关于3D点云的源码论文,共篇,分析供有志于发表论文的源码同学参考。 以下是分析其中几篇论文的简介: CVPR 1. Attention-based Point Cloud Edge Sampling (APES) 该文提出了一种基于注意力的点云边缘采样方法,通过提取轮廓上的源码显著点,在多个任务中表现出良好性能。分析 2. IterativePFN: True Iterative Point Cloud Filtering 作者提出了迭代点云过滤网络IterativePFN,源码它通过内部模拟真实的迭代过滤过程,使用新颖的损失函数训练,能捕捉中间过滤结果之间的关系。 3. ULIP: Learning a Unified Representation of Language, Images, and Point Clouds 该文提出ULIP,通过预训练学习统一的多模态表示,克服训练三元组不足的问题,利用图像文本模型获得共享的视觉语义空间。 4. SCPNet: Semantic Scene Completion on Point Cloud 论文提出了改进语义场景完成性能的方法,包括重新设计完成子网络、设计师生知识蒸馏和使用泛光分割标签校正完成标签。 5. ACL-SPC: Adaptive Closed-Loop system for Self-Supervised Point Cloud Completion 该论文提出自监督的点云补全框架ACL-SPC,可进行同域训练和测试,无需合成数据,欧盟能源码是什么使用自适应闭环系统实现无先验信息的点云自监督补全。 6. Learning Human-to-Robot Handovers from Point Clouds 论文提出一个端到端框架,学习视觉的人机交接控制策略,通过训练实现从模拟到真实的有效迁移。 7. PartManip: Learning Cross-Category Generalizable Part Manipulation Policy from Point Cloud Observations 该文构建了基于部件的跨类别物体操作基准,提出了专家示教和对抗学习方法,实现基于稀疏点云的通用跨类别物体操作策略学习。 8. PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D Object Detection 论文提出了跨模态自监督预训练框架PiMAE,通过交互、共享解码器和跨模态重建模块,提升点云和图像的表示学习。 9. Complete-to-Partial 4D Distillation for Self-Supervised Point Cloud Sequence Representation Learning 本文提出了一种4D自监督预训练方法,将4D表示学习表述为一个teacher-student知识蒸馏框架,提高学生模型的学习能力。 ICCV . Robo3D: Towards Robust and Reliable 3D Perception against Corruptions 该文提出了一个面向3D检测和分割模型鲁棒性的基准测试集Robo3D,旨在探究模型在非理想场景下的可靠性。非线性优化(三):g2o源代码
新年伊始,让我们探讨一下g2o(通用图优化)在SLAM(Simultaneous Localization and Mapping)中的后端优化库应用。在《十四讲》中,我们对g2o有了初步的了解,并总结了其在SLAM中的使用情况。与ceres相比,g2o的文档较为简略,主要依赖于两篇论文进行参考。本文将深入探讨g2o的源代码,特别是核心文件夹中的部分,以揭示这个在SLAM领域广为人知的溯源码怎么扫不出后端优化库的内在机理。
首先,让我们通过一张类关系图来直观理解g2o的架构。整个g2o系统分为三层:HyperGraph、OptimizableGraph、以及SparseOptimizer。HyperGraph作为最高层,提供了一个高度抽象的框架,其内部通过内类的方式实现了Vertex和Edge的结构。Vertex和Edge相互关联,Vertex存储与节点相关联的边的集合,而Edge则记录了与之链接的节点信息。HyperGraph提供了基本的节点和边的操作,如获取、设置等,同时也包含了更复杂的功能,如节点和边的合并、删除等。
OptimizableGraph继承自HyperGraph,进一步丰富了Vertex和Edge的实现,为图优化提供了更具体的接口。OptimizableGraph引入了海塞矩阵和b向量的概念,以及与之相关的操作,如获取海塞矩阵元素、设置参数位置等。此外,它还支持通过栈操作(pop、push)来管理节点信息。停车收费系统源码查询
在OptimizableGraph之上,SparseOptimizer作为优化操作的对象,实现了优化的接口,并提供了初始化、辅助函数以及优化的核心函数。SparseOptimizer通过内部类实现了Vertex和Edge的实例化,为具体的优化算法提供了操作图的接口。
在实现细节方面,BaseVertex和BaseEdge类继承了OptimizableGraph中的相应类,实现了节点和边的基本功能。BaseVertex类负责记录节点的海塞矩阵、b向量和估计值,并提供了数值求导的备份和恢复功能。BaseEdge类则负责处理测量信息和信息矩阵的计算,包括计算误差、构造二次形式等。此外,不同类型的边(BaseUnaryEdge、BaseBinaryEdge、BaseMultiEdge)通过继承BaseEdge类,实现了不同链接节点数量的边的特殊操作。
鲁棒核函数的实现是g2o优化框架中一个关键部分,它在处理非线性优化问题时提供了鲁棒性,确保了优化过程的稳定性。g2o通过RobustKernel虚基类提供了设置和获取核函数参数的接口,并在具体实现中使用了简化版本的计算公式,以保证信息矩阵的宝塔面板怎么保存源码正定性。
最后,OptimizationAlgorithm类定义了优化器的一系列接口,如初始化、计算边际值和求解等。g2o的优化算法包括GN、LM和dog-leg,它们分别实现了不同的求解策略,而具体的矩阵求解任务则通过Solver类及其派生类(如BlockSolver)完成。BlockSolver类提供了一个通用框架,允许用户自定义线性求解器,如直接求解、迭代求解等。
综上所述,g2o通过层次化的类结构,提供了从抽象到具体、从基础到进阶的图优化解决方案,其设计旨在高效、鲁棒地解决SLAM中的后端优化问题。深入理解g2o的源代码,对于开发者和研究者来说,不仅能够提高优化算法的实现效率,还能深刻理解SLAM系统中的优化机制。
怎样将电网频率用于多媒体取证?面向音频取证的电网频率检测与增强有源码
多媒体来源取证与真伪取证的方法有很多种,其中一种有趣的取证方法是通过分析音频中的电网频率(俗称电流声)在音频中留下的痕迹,可以有效地检测音视频文件的产生时间,并进行各种取证。该方法由武汉大学的华光等老师提出,文末有源代码,供感兴趣的老师和同学参考。
电网频率(electric network frequency,ENF)是指交流电网的传输频率,我国标称值为 Hz(其他国家也有 Hz),是被动多媒体取证的重要判据。它之所以能够成为取证判据,主要有三个原因:首先,交流电和用电器的活动会产生以标称频率为基波的声学震动以及照明设备的灯光闪烁,这些不易被人感知的振动和闪烁可以被音视频录制设备捕捉,形成一种“被动不可见水印”;其次,电网频率在标称值附近随机小范围波动,赋予了电网频率轨迹的独特性;第三,电网频率波动模式在同一电网内部所有位置保持一致,赋予了电网频率波动的一致性。经过多年的发展,电网频率判据已可用于音视频文件产生时间溯源、篡改检测与定位、地理位置溯源、重放攻击检测等取证任务。目前,电网频率分析是录音文件产生时间被动溯源的唯一有效方法。
然而,基于电网频率判据的数字取证研究仍面临一些困难。首先,并不是任意设备在任意条件下都能成功捕捉电网频率;其次,电网频率相对于录音内容和环境噪声十分微弱,在无法控制录音条件的实际取证任务中难以进行有效提取和分析。针对这两个问题,本项工作分别提出了录音文件中电网频率的检测和增强算法,并建立并开源了目前最大的“电网频率-武汉大学”(ENF-WHU)真实世界录音文件数据集,用于对相关算法进行全面评估。
为确认待验录音文件中是否存在电网频率以保证后续取证分析有效,本工作从信号检测理论出发,逐步放宽对信号模型的假设,推导出电网频率的一系列理论和实际检测器。其中,只有本工作提出的TF-detector为恒虚警率(CFAR)检测器。
由于信号模型和特性的巨大差异,现有语音(或其他信号)的增强的方法均无法有效增强电网频率信号。对于检测到电网频率的录音文件,为提升其可用性,本工作提出了一种适合电网频率随机小范围缓慢波动特性的鲁棒滤波算法(robust filtering algorithm,RFA),将观测到的带噪电网频率信号调制到正弦频率调频(SFM)解析信号的瞬时频率,并引入核函数,通过处理其产生的正弦时频分布,逐个恢复去噪后的电网频率观测样本,显著提升了电网频率轨迹的质量,为后续取证分析提供了可靠数据。
以上工作为提升电网频率判据在实际取证中的可靠性,促进基于电网频率判据的录音文件取证从实验室走向实际应用提供了技术支撑。相关成果于和年分别发表在IEEE Transactions on Information Forensics and Security,作者为武汉大学华光、张海剑、廖晗、王清懿、叶登攀。
ENF-WHU数据集和MATLAB程序已开源:
github.com/ghuawhu/ENF-...
Guang Hua and Haijian Zhang*, “ENF signal enhancement in audio recordings,” IEEE Transactions on Information Forensics and Security, vol. , pp. -, .
Guang Hua, Han Liao, Qingyi Wang, Haijian Zhang*, and Dengpan Ye, “Detection of electric network frequency in audio recordings – from theory to practical detectors,” IEEE Transactions on Information Forensics and Security, vol. , pp. -, .
Robust 2.0:支持Android R8的升级版热修复框架
美团Robust热修复框架针对Android R8的升级版,致力于解决热修复补丁制作中遇到的挑战,实现高准确性和自动化。R8作为Google推出的代码优化混淆工具,取代了Proguard,改善了Android构建过程中的字节码体积和性能。随着Android构建工具链的升级至官方新版本,R8替代了Proguard和Dex,给热修复补丁制作带来了新的问题和解决方案。
热修复补丁制作流程包括基于线上代码进行逻辑修复,二次打包,自动比较修复包和线上包的差异,最后制作出轻量级补丁包。面对R8带来的挑战,Robust在适配过程中,首先对Android编译和构建过程进行深入分析,识别出导致补丁制作不准确的关键因素:结构化变化,如类、字段、方法在编译和混淆过程中的消失、合并、内联等。其次,Robust提出整体解决方案,通过将改动识别前置至优化混淆前,结合线上APK结构化解析,校正补丁代码对线上代码的调用,生成patch.jar,使用R8对patch.jar进行混淆、脱糖和生成Dex,最终打包为patch.apk。
在解决R8与Proguard优化对比问题时,Robust关注R8的优化规则与Proguard的差异,通过构建参数、反射或源码修改实现规则禁用,尽管规则不完全对应,但基本实现了相同的优化效果。对于识别“真”“假”改动,Robust通过模糊处理数字编号、分析桥接方法访问规则,以及处理组件化项目中Lambda表达式等复杂情况,确保改动识别的准确性和全面性。
内联识别与处理方面,Robust确保方法调用的合法性,关注类、字段、方法的存在与可访问性,如果线上包中不存在或不可访问,补丁生成阶段需做相应的处理,例如,将方法视为新增或使用反射调用。混淆问题与优化中,Robust仅对发生变更的类进行混淆,减少了混淆不一致的概率,并在生成补丁后通过对比校验确保混淆的一致性。
在其他优化方面,Robust针对super指令的模拟实现,采用辅助类解决super调用问题,以及函数插桩与修复,包括复制构造函数、处理静态初始化函数clinit,确保修复过程的正确性和兼容性。对于新增类、成员变量和方法的处理,Robust通过新增类或辅助类维持映射关系,确保热修复补丁的全面覆盖。
总结而言,Robust热修复框架在适配Android R8过程中,通过深入分析编译和构建过程,结合字节码工具和自动化处理技术,成功解决了热修复补丁制作中的各种挑战,实现了高准确性和自动化补丁生成,为Android应用的持续稳定运行提供了有力支持。
2024-12-24 09:01
2024-12-24 08:28
2024-12-24 08:02
2024-12-24 07:54
2024-12-24 06:55