本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【直播源码哪家最好】【下穿源码】【站点统计源码】哈希源码_哈希源码搭建

2024-11-19 01:37:20 来源:综合 分类:综合

1.Hermes源码分析(二)——解析字节码
2.HashMap实现原理一步一步分析(1-put方法源码整体过程)
3.hash / hashtable(linux kernel 哈希表)
4.HashMap实现原理
5.Redis7.0源码阅读:哈希表扩容、哈希哈希缩容以及rehash

哈希源码_哈希源码搭建

Hermes源码分析(二)——解析字节码

        前面一节 讲到字节码序列化为二进制是源码源码有固定的格式的,这里我们分析一下源码里面是搭建怎么处理的

        这里可以看到首先写入的是魔数,他的哈希哈希值为

        对应的二进制见下图,注意是源码源码小端字节序

        第二项是字节码的版本,笔者的搭建直播源码哪家最好版本是,也即 上图中的哈希哈希4a

        第三项是源码的hash,这里采用的源码源码是SHA1算法,生成的搭建哈希值是位,因此占用了个字节

        第四项是哈希哈希文件长度,这个字段是源码源码位的,也就是搭建下图中的为0aa,转换成十进制就是哈希哈希,实际文件大小也是源码源码这么多

        后面的字段类似,就不一一分析了,搭建头部所有字段的类型都可以在BytecodeFileHeader.h中看到,Hermes按照既定的内存布局把字段写入后再序列化,就得到了我们看到的字节码文件。

        这里写入的数据很多,以函数头的写入为例,我们调用了visitFunctionHeader方法,并通过byteCodeModule拿到函数的下穿源码签名,将其写入函数表(存疑,在实际的文件中并没有看到这一部分)。注意这些数据必须按顺序写入,因为读出的时候也是按对应顺序来的。

        我们知道react-native 在加载字节码的时候需要调用hermes的prepareJavaScript方法, 那这个方法做了些什么事呢?

        这里做了两件事情:

        1. 判断是否是字节码,如果是则调用createBCProviderFromBuffer,否则调用createBCProviderFromSrc,我们这里只关注createBCProviderFromBuffer

        2.通过BCProviderFromBuffer的构造方法得到文件头和函数头的信息(populateFromBuffer方法),下面是这个方法的实现。

        BytecodeFileFields的populateFromBuffer方法也是一个模版方法,注意这里调用populateFromBuffer方法的是一个 ConstBytecodeFileFields对象,他代表的是不可变的字节码字段。

        细心的读者会发现这里也有visitFunctionHeaders方法, 这里主要为了复用visitBytecodeSegmentsInOrder的逻辑,把populator当作一个visitor来按顺序读取buffer的内容,并提前加载到BytecodeFileFields里面,以减少后面执行字节码时解析的时间。

        Hermes引擎在读取了字节码之后会通过解析BytecodeFileHeader这个结构体中的字段来获取一些关键信息,例如bundle是否是字节码格式,是站点统计源码否包含了函数,字节码的版本是否匹配等。注意这里我们只是解析了头部,没有解析整个字节码,后面执行字节码时才会解析剩余的部分。

        evaluatePreparedJavaScript这个方法,主要是调用了HermesRuntime的 runBytecode方法,这里hermesPrep时上一步解析头部时获取的BCProviderFromBuffer实例。

        runBytecode这个方法比较长,主要做了几件事情:

        这里说明一下,Domain是用于垃圾回收的运行时模块的代理, Domain被创建时是空的,并跟随着运行时模块进行传播, 在运行时模块的整个生命周期内都一直存在。在某个Domain下创建的所有函数都会保持着对这个Domain的强引用。当Domain被回收的时候,这个Domain下的所有函数都不能使用。

        未完待续。。。

HashMap实现原理一步一步分析(1-put方法源码整体过程)

       本文分享了HashMap内部的实现原理,重点解析了哈希(hash)、sarspace的源码散列表(hash table)、哈希码(hashcode)以及hashCode()方法等基本概念。

       哈希(hash)是将任意长度的输入通过散列算法转换为固定长度输出的过程,建立一一对应关系。常见算法包括MD5加密和ASCII码表。

       散列表(hash table)是一种数据结构,通过关键码值映射到表中特定位置进行快速访问。

       哈希码(hashcode)是散列表中对象的存储位置标识,用于查找效率。

       Object类中的hashCode()方法用于获取对象的哈希码值,以在散列存储结构中确定对象存储地址。

       在存储字母时,使用哈希码值对数组大小取模以适应存储范围,防止哈希碰撞。

       HashMap在JDK1.7中使用数组+链表结构,而JDK1.8引入了红黑树以优化性能。

       HashMap内部数据结构包含数组和Entry对象,数组用于存储Entry对象,Entry对象用于存储键值对。

       在put方法中,首先判断数组是大青云源码否为空并初始化,然后计算键的哈希码值对数组长度取模,用于定位存储位置。如果发生哈希碰撞,使用链表解决。

       本文详细介绍了HashMap的存储机制,包括数组+链表的实现方式,以及如何处理哈希碰撞。后续文章将继续深入探讨HashMap的其他特性,如数组长度的优化、多线程环境下的性能优化和红黑树的引入。

hash / hashtable(linux kernel 哈希表)

       哈希表,或称为散列表,是一种高效的数据结构,因其插入和查找速度的优势而备受关注。然而,其空间利用率并不固定,需要权衡。让我们通过实例来深入理解它的作用和工作原理。

       想象一个场景:我们需要高效地存储和访问大量数据。首先,常规的数组方法,如普通数组和有序数组,虽然插入简单,但查找效率低,尤其是在数据量较大时。例如,查找可能需要对数千个元素进行比较。有序数组通过牺牲增删效率来提升查询,但数组空间固定且可能浪费大量资源。

       链表提供了更灵活的增删操作,但随机访问困难,适合数据频繁变动的情况。红黑树在查询和增删效率上表现优秀,但此处暂不讨论。庞大的数组虽然理论上能快速查找,但实际操作中难以实现,因为它需要预先预估并准备极大数据空间。

       这时,哈希表登场了。它利用哈希函数将数据映射到一个较小的数组中,即使存在冲突(不同数据映射到同一地址),通过链表解决,仍然能显著提升查找效率。例如,即使身份证号的哈希结果可能有重复,但实际冲突相对较少,通过链表链接,平均查找次数大大减少。

       使用哈希表包括简单的步骤:包含头文件,声明和初始化哈希表,添加节点,以及通过哈希键查找节点。在实际源码中,如Linux kernel的hash.h和hashtable.h文件,哈希表的初始化和操作都是基于这些步骤进行的。

       总结来说,哈希表在大数据场景中通过计算直接定位数据,显著提高效率,尤其是在数据量增大时。如果你对Linux kernel的哈希表实现感兴趣,可以关注我的专栏RTFSC,深入探讨更多源码细节。

HashMap实现原理

        HashMap在实际开发中用到的频率非常高,面试中也是热点。所以决定写一篇文章进行分析,希望对想看源码的人起到一些帮助,看之前需要对链表比较熟悉。

        以下都是我自己的理解,欢迎讨论,写的不好轻喷。

        HashMap中的数据结构为散列表,又名哈希表。在这里我会对散列表进行一个简单的介绍,在此之前我们需要先回顾一下 数组、链表的优缺点。

        数组和链表的优缺点取决于他们各自在内存中存储的模式,也就是直接使用顺序存储或链式存储导致的。无论是数组还是链表,都有明显的缺点。而在实际业务中,我们想要的往往是寻址、删除、插入性能都很好的数据结构,散列表就是这样一种结构,它巧妙的结合了数组与链表的优点,并将其缺点弱化(并不是完全消除)

        散列表的做法是将key映射到数组的某个下标,存取的时候通过key获取到下标(index)然后通过下标直接存取。速度极快,而将key映射到下标需要使用散列函数,又名哈希函数。说到哈希函数可能有人已经想到了,如何将key映射到数组的下标。

        图中计算下标使用到了以下两个函数:

        值得注意的是,下标并不是通过hash函数直接得到的,计算下标还要对hash值做index()处理。

        Ps:在散列表中,数组的格子叫做桶,下标叫做桶号,桶可以包含一个key-value对,为了方便理解,后文不会使用这两个名词。

        以下是哈希碰撞相关的说明:

        以下是下标冲突相关的说明:

        很多人认为哈希值的碰撞和下标冲突是同一个东西,其实不是的,它们的正确关系是这样的,hashCode发生碰撞,则下标一定冲突;而下标冲突,hashCode并不一定碰撞

        上文提到,在jdk1.8以前HashMap的实现是散列表 = 数组 + 链表,但是到目前为止我们还没有看到链表起到的作用。事实上,HashMap引入链表的用意就是解决下标冲突。

        下图是引入链表后的散列表:

        如上图所示,左边的竖条,是一个大小为的数组,其中存储的是链表的头结点,我们知道,拥有链表的头结点即可访问整个链表,所以认为这个数组中的每个下标都存储着一个链表。其具体做法是,如果发现下标冲突,则后插入的节点以链表的形式追加到前一个节点的后面。

        这种使用链表解决冲突的方法叫做:拉链法(又叫链地址法)。HashMap使用的就是拉链法,拉链法是冲突发生以后的解决方案。

        Q:有了拉链法,就不用担心发生冲突吗?

        A:并不是!由于冲突的节点会不停的在链表上追加,大量的冲突会导致单个链表过长,使查询性能降低。所以一个好的散列表的实现应该从源头上减少冲突发生的可能性,冲突发生的概率和哈希函数返回值的均匀程度有直接关系,得到的哈希值越均匀,冲突发生的可能性越小。为了使哈希值更均匀,HashMap内部单独实现了hash()方法。

        以上是散列表的存储结构,但是在被运用到HashMap中时还有其他需要注意的地方,这里会详细说明。

        现在我们清楚了散列表的存储结构,细心的人应该已经发现了一个问题:Java中数组的长度是固定的,无论哈希函数是否均匀,随着插入到散列表中数据的增多,在数组长度不变的情况下,链表的长度会不断增加。这会导致链表查询性能不佳的缺点出现在散列表上,从而使散列表失去原本的意义。为了解决这个问题,HashMap引入了扩容与负载因子。

        以下是和扩容相关的一些概念和解释:

        Ps:扩容要重新计算下标,扩容要重新计算下标,扩容要重新计算下标,因为下标的计算和数组长度有关,长度改变,下标也应当重新计算。

        在1.8及其以上的jdk版本中,HashMap又引入了红黑树。

        红黑树的引入被用于替换链表,上文说到,如果冲突过多,会导致链表过长,降低查询性能,均匀的hash函数能有效的缓解冲突过多,但是并不能完全避免。所以HashMap加入了另一种解决方案,在往链表后追加节点时,如果发现链表长度达到8,就会将链表转为红黑树,以此提升查询的性能。

Redis7.0源码阅读:哈希表扩容、缩容以及rehash

       当哈希值相同发生冲突时,Redis 使用链表法解决,将冲突的键值对通过链表连接,但随着数据量增加,冲突加剧,查找效率降低。负载因子衡量冲突程度,负载因子越大,冲突越严重。为优化性能,Redis 需适时扩容,将新增键值对放入新哈希桶,减少冲突。

       扩容发生在 setCommand 部分,其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。

       扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。

       哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。

       rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,减少冲突。dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。

       在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,实现 rehash 结果的整合。

       综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。

相关推荐
一周热点