皮皮网

【地板源码】【直播视频诱导支付源码】【微信电子请柬源码】map reduce源码

2025-01-11 22:21:23 来源:项目的源码

1.如何使用Python为Hadoop编写一个简单的MapReduce程序
2.Mapreduce 在通过reduce计算value之后怎么统计计算次数?
3.yarn源码分析(四)AppMaster启动
4.MapReduce源码解析之InputFormat
5.如何分布式运行mapreduce程序
6.MapReduce源码解析之Mapper

map reduce源码

如何使用Python为Hadoop编写一个简单的MapReduce程序

       MichaelG.Noll在他的Blog中提到如何在Hadoop中用Python编写MapReduce程序,韩国的gogamza在其Bolg中也提到如何用C编写MapReduce程序(我稍微修改了一下原程序,因为他的Map对单词切分使用tab键)。我合并他们两人的文章,也让国内的Hadoop用户能够使用别的语言来编写MapReduce程序。  首先您得配好您的Hadoop集群,这方面的介绍网上比较多,这儿给个链接(Hadoop学习笔记二安装部署)。HadoopStreaming帮助我们用非Java的编程语言使用MapReduce,Streaming用STDIN(标准输入)和STDOUT(标准输出)来和我们编写的Map和Reduce进行数据的交换数据。任何能够使用STDIN和STDOUT都可以用来编写MapReduce程序,比如我们用Python的sys.stdin和sys.stdout,或者是C中的stdin和stdout。  我们还是使用Hadoop的例子WordCount来做示范如何编写MapReduce,在WordCount的例子中我们要解决计算在一批文档中每一个单词的出现频率。首先我们在Map程序中会接受到这批文档每一行的数据,然后我们编写的Map程序把这一行按空格切开成一个数组。并对这个数组遍历按"1"用标准的输出输出来,代表这个单词出现了一次。在Reduce中我们来统计单词的出现频率。    PythonCode  Map:mapper.py  #!/usr/bin/envpythonimportsys#mapswordstotheircountsword2count={ }#inputcomesfromSTDIN(standardinput)forlineinsys.stdin:#removeleadingandtrailingwhitespaceline=line.strip()#splitthelineintowordswhileremovinganyemptystringswords=filter(lambdaword:word,line.split())#increasecountersforwordinwords:#writetheresultstoSTDOUT(standardoutput);#whatweoutputherewillbetheinputforthe#Reducestep,i.e.theinputforreducer.py##tab-delimited;thetrivialwordcountis1print'%s\t%s'%(word,1)  Reduce:reducer.py  #!/usr/bin/envpythonfromoperatorimportitemgetterimportsys#mapswordstotheircountsword2count={ }#inputcomesfromSTDINforlineinsys.stdin:#removeleadingandtrailingwhitespaceline=line.strip()#parsetheinputwegotfrommapper.pyword,count=line.split()#convertcount(currentlyastring)tointtry:count=int(count)word2count[word]=word2count.get(word,0)+countexceptValueError:#countwasnotanumber,sosilently#ignore/discardthislinepass#sortthewordslexigraphically;##thisstepisNOTrequired,wejustdoitsothatour#finaloutputwilllookmoreliketheofficialHadoop#wordcountexamplessorted_word2count=sorted(word2count.items(),key=itemgetter(0))#writetheresultstoSTDOUT(standardoutput)forword,countinsorted_word2count:print'%s\t%s'%(word,count)  CCode  Map:Mapper.c  #include#include#include#include#defineBUF_SIZE#defineDELIM"\n"intmain(intargc,char*argv[]){ charbuffer[BUF_SIZE];while(fgets(buffer,BUF_SIZE-1,stdin)){ intlen=strlen(buffer);if(buffer[len-1]=='\n')buffer[len-1]=0;char*querys=index(buffer,'');char*query=NULL;if(querys==NULL)continue;querys+=1;/*nottoinclude'\t'*/query=strtok(buffer,"");while(query){ printf("%s\t1\n",query);query=strtok(NULL,"");}}return0;}h>h>h>h>  Reduce:Reducer.c  #include#include#include#include#defineBUFFER_SIZE#defineDELIM"\t"intmain(intargc,char*argv[]){ charstrLastKey[BUFFER_SIZE];charstrLine[BUFFER_SIZE];intcount=0;*strLastKey='\0';*strLine='\0';while(fgets(strLine,BUFFER_SIZE-1,stdin)){ char*strCurrKey=NULL;char*strCurrNum=NULL;strCurrKey=strtok(strLine,DELIM);strCurrNum=strtok(NULL,DELIM);/*necessarytocheckerrorbut.*/if(strLastKey[0]=='\0'){ strcpy(strLastKey,strCurrKey);}if(strcmp(strCurrKey,strLastKey)){ printf("%s\t%d\n",strLastKey,count);count=atoi(strCurrNum);}else{ count+=atoi(strCurrNum);}strcpy(strLastKey,strCurrKey);}printf("%s\t%d\n",strLastKey,count);/*flushthecount*/return0;}h>h>h>h>  首先我们调试一下源码:  chmod+xmapper.pychmod+xreducer.pyecho"foofooquuxlabsfoobarquux"|./mapper.py|./reducer.pybar1foo3labs1quux2g++Mapper.c-oMapperg++Reducer.c-oReducerchmod+xMapperchmod+xReducerecho"foofooquuxlabsfoobarquux"|./Mapper|./Reducerbar1foo2labs1quux1foo1quux1  你可能看到C的输出和Python的不一样,因为Python是把他放在词典里了.我们在Hadoop时,会对这进行排序,然后相同的单词会连续在标准输出中输出.  在Hadoop中运行程序  首先我们要下载我们的测试文档wget页面中摘下的用php编写的MapReduce程序,供php程序员参考:Map:mapper.php  #!/usr/bin/php$word2count=array();//inputcomesfromSTDIN(standardinput)while(($line=fgets(STDIN))!==false){ //removeleadingandtrailingwhitespaceandlowercase$line=strtolower(trim($line));//splitthelineintowordswhileremovinganyemptystring$words=preg_split('/\W/',$line,0,PREG_SPLIT_NO_EMPTY);//increasecountersforeach($wordsas$word){ $word2count[$word]+=1;}}//writetheresultstoSTDOUT(standardoutput)//whatweoutputherewillbetheinputforthe//Reducestep,i.e.theinputforreducer.pyforeach($word2countas$word=>$count){ //tab-delimitedecho$word,chr(9),$count,PHP_EOL;}?>  Reduce:mapper.php  #!/usr/bin/php$word2count=array();//inputcomesfromSTDINwhile(($line=fgets(STDIN))!==false){ //removeleadingandtrailingwhitespace$line=trim($line);//parsetheinputwegotfrommapper.phplist($word,$count)=explode(chr(9),$line);//convertcount(currentlyastring)toint$count=intval($count);//sumcountsif($count>0)$word2count[$word]+=$count;}//sortthewordslexigraphically////thissetisNOTrequired,wejustdoitsothatour//finaloutputwilllookmoreliketheofficialHadoop//wordcountexamplesksort($word2count);//writetheresultstoSTDOUT(standardoutput)foreach($word2countas$word=>$count){ echo$word,chr(9),$count,PHP_EOL;}?>  作者:马士华发表于:--

Mapreduce 在通过reduce计算value之后怎么统计计算次数?

       简单,不知道你看没看过Wordcount源码,其中的统计出现次数是传入一个1,通过reduce相加计算得出次数。我可以通过Map传入value时拼接一个1,在reduce中通过拆分字符串得到你要的地板源码原valeu和传入的1 ,分别去计算后再拼入输出就可以得到了

yarn源码分析(四)AppMaster启动

       在容器分配完成之后,启动容器的代码主要在ContainerImpl.java中进行。通过状态机转换,container从NEW状态向其他状态转移时,会调用RequestResourceTransition对象。RequestResourceTransition负责将所需的资源进行本地化,或者避免资源本地化。直播视频诱导支付源码若需本地化,还需过渡到LOCALIZING状态。为简化理解,此处仅关注是否进行资源本地化的情况。

       为了将LAUNCH_CONTAINER事件加入事件处理队列,调用了sendLaunchEvent方法。该事件由ContainersLauncher负责处理。ContainersLauncher的handle方法中,使用一个ExecutorService(线程池)容器Launcher。ContainerLaunch实现了Callable接口,其call方法生成并执行launch_container脚本。以MapReduce框架为例,微信电子请柬源码该脚本在hadoop.tmp.dir/application name/container name目录下生成,其主要作用是启动MRAppMaster进程,即MapReduce的ApplicationMaster。

MapReduce源码解析之InputFormat

       导读

       深入探讨MapReduce框架的核心组件——InputFormat。此组件在处理多样化数据类型时,扮演着数据格式化和分片的角色。通过设置job.setInputFormatClass(TextInputFormat.class)等操作,程序能正确处理不同文件类型。InputFormat类作为抽象基础,定义了文件切分逻辑和RecordReader接口,用于读取分片数据。本节将解析InputFormat、ad hoc安卓源码InputSplit、RecordReader的结构与实现,以及如何在Map任务中应用此框架。

       类图与源码解析

       InputFormat类提供了两个关键抽象方法:getSplits()和createRecordReader()。getSplits()负责规划文件切分策略,定义逻辑上的分片,而RecordReader则从这些分片中读取数据。

       InputSplit类承载了切分逻辑,表示了给定Mapper处理的逻辑数据块,包含所有K-V对的集合。

       RecordReader类实现了数据读取流程,其子类如LineRecordReader,梦幻炒家指标公式源码提供行数据读取功能,将输入流中的数据按行拆分,赋值为Key和Value。

       具体实现与操作流程

       在getSplits()方法中,FileInputFormat类负责将输入文件按照指定策略切分成多个InputSplit。

       TextInputFormat类的createRecordReader()方法创建了LineRecordReader实例,用于读取文件中的每一行数据,形成K-V对。

       Mapper任务执行时,通过调用RecordReader的nextKeyValue()方法,读取文件的每一行,完成数据处理。

       在Map任务的run()方法中,MapContextImp类实例化了一个RecordReader,用于实现数据的迭代和处理。

       总结

       本文详细阐述了MapReduce框架中InputFormat的实现原理及其相关组件,包括类图、源码解析、具体实现与操作流程。后续文章将继续探讨MapReduce框架的其他关键组件源码解析,为开发者提供深入理解MapReduce的构建和优化方法。

如何分布式运行mapreduce程序

       ä¸€ã€ 首先要知道此前提 转载

       ã€€ã€€è‹¥åœ¨windows的Eclipse工程中直接启动mapreduc程序,需要先把hadoop集群的配置目录下的xml都拷贝到src目录下,让程序自动读取集群的地址后去进行分布式运行(您也可以自己写java代码去设置job的configuration属性)。

       ã€€ã€€è‹¥ä¸æ‹·è´ï¼Œå·¥ç¨‹ä¸­bin目录没有完整的xml配置文件,则windows执行的mapreduce程序全部通过本机的jvm执行,作业名也是带有“local"字眼的作业,如 job_local_。 这不是真正的分布式运行mapreduce程序。

       ã€€ã€€ä¼°è®¡å¾—研究org.apache.hadoop.conf.Configuration的源码,反正xml配置文件会影响执行mapreduce使用的文件系统是本机的windows文件系统还是远程的hdfs系统; 还有影响执行mapreduce的mapper和reducer的是本机的jvm还是集群里面机器的jvm

       ã€€ã€€äºŒã€ 本文的结论

       ã€€ã€€ç¬¬ä¸€ç‚¹å°±æ˜¯ï¼š windows上执行mapreduce,必须打jar包到所有slave节点才能正确分布式运行mapreduce程序。(有个需求是要windows上触发一个mapreduce分布式运行)

       ã€€ã€€ç¬¬äºŒç‚¹å°±æ˜¯ï¼š Linux上,只需拷贝jar文件到集群master上,执行命令hadoop jarPackage.jar MainClassName即可分布式运行mapreduce程序。

       ã€€ã€€ç¬¬ä¸‰ç‚¹å°±æ˜¯ï¼š 推荐使用附一,实现了自动打jar包并上传,分布式执行的mapreduce程序。

       ã€€ã€€é™„一、 推荐使用此方法:实现了自动打jar包并上传,分布式执行的mapreduce程序:

       ã€€ã€€è¯·å…ˆå‚考博文五篇:

       ã€€ã€€Hadoop作业提交分析(一)~~(五)

       ã€€ã€€å¼•ç”¨åšæ–‡çš„附件中EJob.java到工程中,然后main中添加如下方法和代码。

       ã€€ã€€public static File createPack() throws IOException {

       ã€€ã€€File jarFile = EJob.createTempJar("bin");

       ã€€ã€€ClassLoader classLoader = EJob.getClassLoader();

       ã€€ã€€Thread.currentThread().setContextClassLoader(classLoader);

       ã€€ã€€return jarFile;

       ã€€ã€€}

       ã€€ã€€åœ¨ä½œä¸šå¯åŠ¨ä»£ç ä¸­ä½¿ç”¨æ‰“包:

       ã€€ã€€Job job = Job.getInstance(conf, "testAnaAction");

       ã€€ã€€æ·»åŠ ï¼š

       ã€€ã€€String jarPath = createPack().getPath();

       ã€€ã€€job.setJar(jarPath);

       ã€€ã€€å³å¯å®žçŽ°ç›´æŽ¥run as java application 在windows跑分布式的mapreduce程序,不用手工上传jar文件。

       ã€€ã€€é™„二、得出结论的测试过程

       ã€€ã€€ï¼ˆæœªæœ‰ç©ºçœ‹ä¹¦ï¼Œåªèƒ½é€šè¿‡æ„šç¬¨çš„测试方法得出结论了)

       ã€€ã€€ä¸€. 直接通过windows上Eclipse右击main程序的java文件,然后"run as application"或选择hadoop插件"run on hadoop"来触发执行MapReduce程序的测试。

       ã€€ã€€1,如果不打jar包到进集群任意linux机器上,它报错如下:

       ã€€ã€€[work] -- ::, - org.apache.hadoop.mapreduce.Job - [main] INFO org.apache.hadoop.mapreduce.Job - map 0% reduce 0%

       ã€€ã€€[work] -- ::, - org.apache.hadoop.mapreduce.Job - [main] INFO org.apache.hadoop.mapreduce.Job - Task Id : attempt___m__0, Status : FAILED

       ã€€ã€€Error: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class bookCount.BookCount$BookCountMapper not found

       ã€€ã€€at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:)

       ã€€ã€€at org.apache.hadoop.mapreduce.task.JobContextImpl.getMapperClass(JobContextImpl.java:)

       ã€€ã€€at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:)

       ã€€ã€€at org.apache.hadoop.mapred.MapTask.run(MapTask.java:)

       ã€€ã€€at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:)

       ã€€ã€€at java.security.AccessController.doPrivileged(Native Method)

       ã€€ã€€at javax.security.auth.Subject.doAs(Subject.java:)

       ã€€ã€€at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:)

       ã€€ã€€at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:)

       ã€€ã€€Caused by: java.lang.ClassNotFoundException: Class bookCount.BookCount$BookCountMapper not found

       ã€€ã€€at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:)

       ã€€ã€€at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:)

       ã€€ã€€... 8 more

       ã€€ã€€# Error:后重复三次

       ã€€ã€€-- ::, - org.apache.hadoop.mapreduce.Job - [main] INFO org.apache.hadoop.mapreduce.Job - map % reduce %

       ã€€ã€€çŽ°è±¡å°±æ˜¯ï¼šæŠ¥é”™ï¼Œæ— è¿›åº¦ï¼Œæ— è¿è¡Œç»“果。

       ã€€ã€€

       ã€€ã€€2,拷贝jar包到“只是”集群master的$HADOOP_HOME/share/hadoop/mapreduce/目录上,直接通过windows的eclipse "run as application"和通过hadoop插件"run on hadoop"来触发执行,它报错同上。

       ã€€ã€€çŽ°è±¡å°±æ˜¯ï¼šæŠ¥é”™ï¼Œæ— è¿›åº¦ï¼Œæ— è¿è¡Œç»“果。

       ã€€ã€€3,拷贝jar包到集群某些slave的$HADOOP_HOME/share/hadoop/mapreduce/目录上,直接通过windows的eclipse "run as application"和通过hadoop插件"run on hadoop"来触发执行

       ã€€ã€€å’ŒæŠ¥é”™ï¼š

       ã€€ã€€Error: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class bookCount.BookCount$BookCountMapper not found

       ã€€ã€€at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:)

       ã€€ã€€at org.apache.hadoop.mapreduce.task.JobContextImpl.getMapperClass(JobContextImpl.java:)

       ã€€ã€€å’ŒæŠ¥é”™ï¼š

       ã€€ã€€Error: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class bookCount.BookCount$BookCountReducer not found

       ã€€ã€€

       ã€€ã€€çŽ°è±¡å°±æ˜¯ï¼šæœ‰æŠ¥é”™ï¼Œä½†ä»ç„¶æœ‰è¿›åº¦ï¼Œæœ‰è¿è¡Œç»“果。

MapReduce源码解析之Mapper

       MapReduce,大数据领域的标志性计算模型,由Google公司研发,其核心概念"Map"与"Reduce"简明易懂却威力巨大,打开了大数据时代的大门。对于许多大数据工作者来说,MapReduce是基础技能之一,而源码解析更是深入理解与实践的必要途径。

       MapReduce由两部分组成:Map与Reduce。Map阶段通过映射函数将一组键值对转换成另一组键值对,而Reduce阶段则负责合并这些新的键值对。这种并行计算模型极大地提高了大数据处理的效率。

       本文将聚焦于Map阶段的核心实现——Mapper。通过解析Mapper类及其子类的源码,我们可以更深入地理解MapReduce的工作机制,并在易观千帆等技术数据处理中发挥更大的效能。

       Mapper类内部包含四个关键方法与一个抽象类:

       setup():主要为map()方法做准备,例如加载配置文件、传递参数。

       cleanup():用于清理资源,如关闭文件、处理Key-Value。

       map():程序的逻辑核心,对输入的文本进行处理(如分割、过滤),以键值对的形式写入context。

       run():驱动Mapper执行的主方法,按照预设顺序执行setup()、map()、cleanup()。

       Context抽象类扮演着重要角色,用于跟踪任务状态和数据存储,如在setup()中读取配置信息,并作为Key-Value载体。

       下面是几个Mapper子类的详细解析:

       InverseMapper:将键值对反转,适用于不同需求的统计分析。

       TokenCounterMapper:使用StringTokenizer对文本进行分割,计算特定token的数量,适用于词频统计等。

       RegexMapper:对文本进行正则化处理,适用于特定格式文本的统计。

       MultithreadedMapper:利用多线程执行Mapper任务,提高CPU利用率,适用于并发处理。

       本文对MapReduce中Mapper及其子类的源码进行了详尽解析,旨在帮助开发者更深入地理解MapReduce的实现机制。后续将探讨更多关键类源码,以期为大数据处理提供更深入的洞察与实践指导。

如何在MaxCompute上运行HadoopMR作业

       MaxCompute(原ODPS)有一套自己的MapReduce编程模型和接口,简单说来,这套接口的输入输出都是MaxCompute中的Table,处理的数据是以Record为组织形式的,它可以很好地描述Table中的数据处理过程,然而与社区的Hadoop相比,编程接口差异较大。Hadoop用户如果要将原来的Hadoop MR作业迁移到MaxCompute的MR执行,需要重写MR的代码,使用MaxCompute的接口进行编译和调试,运行正常后再打成一个Jar包才能放到MaxCompute的平台来运行。这个过程十分繁琐,需要耗费很多的开发和测试人力。如果能够完全不改或者少量地修改原来的Hadoop MR代码就能在MaxCompute平台上跑起来,将是一个比较理想的方式。

       çŽ°åœ¨MaxCompute平台提供了一个HadoopMR到MaxCompute MR的适配工具,已经在一定程度上实现了Hadoop MR作业的二进制级别的兼容,即用户可以在不改代码的情况下通过指定一些配置,就能将原来在Hadoop上运行的MR jar包拿过来直接跑在MaxCompute上。目前该插件处于测试阶段,暂时还不能支持用户自定义comparator和自定义key类型,下面将以WordCount程序为例,介绍一下这个插件的基本使用方式。

       ä½¿ç”¨è¯¥æ’件在MaxCompute平台跑一个HadoopMR作业的基本步骤如下:

       1. 下载HadoopMR的插件

       ä¸‹è½½æ’件,包名为hadoop2openmr-1.0.jar,注意,这个jar里面已经包含hadoop-2.7.2版本的相关依赖,在作业的jar包中请不要携带hadoop的依赖,避免版本冲突。

       2. 准备好HadoopMR的程序jar包

       ç¼–译导出WordCount的jar包:wordcount_test.jar ,wordcount程序的源码如下:

       package com.aliyun.odps.mapred.example.hadoop;

       import org.apache.hadoop.conf.Configuration;

       import org.apache.hadoop.fs.Path;

       import org.apache.hadoop.io.IntWritable;

       import org.apache.hadoop.io.Text;

       import org.apache.hadoop.mapreduce.Job;

       import org.apache.hadoop.mapreduce.Mapper;

       import org.apache.hadoop.mapreduce.Reducer;

       import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

       import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

       import java.io.IOException;

       import java.util.StringTokenizer;

       public class WordCount {

       public static class TokenizerMapper

       extends Mapper<Object, Text, Text, IntWritable>{

       private final static IntWritable one = new IntWritable(1);

       private Text word = new Text();

       public void map(Object key, Text value, Context context

       ) throws IOException, InterruptedException {

       StringTokenizer itr = new StringTokenizer(value.toString());

       while (itr.hasMoreTokens()) {

       word.set(itr.nextToken());

       context.write(word, one);

       }

       }

       }

       public static class IntSumReducer

       extends Reducer<Text,IntWritable,Text,IntWritable> {

       private IntWritable result = new IntWritable();

       public void reduce(Text key, Iterable<IntWritable> values,

       Context context

       ) throws IOException, InterruptedException {

       int sum = 0;

       for (IntWritable val : values) {

       sum += val.get();

       }

       result.set(sum);

       context.write(key, result);

       }

       }

       public static void main(String[] args) throws Exception {

       Configuration conf = new Configuration();

       Job job = Job.getInstance(conf, "word count");

       job.setJarByClass(WordCount.class);

       job.setMapperClass(TokenizerMapper.class);

       job.setCombinerClass(IntSumReducer.class);

       job.setReducerClass(IntSumReducer.class);

       job.setOutputKeyClass(Text.class);

       job.setOutputValueClass(IntWritable.class);

       FileInputFormat.addInputPath(job, new Path(args[0]));

       FileOutputFormat.setOutputPath(job, new Path(args[1]));

       System.exit(job.waitForCompletion(true) ? 0 : 1);

       }

       }

       3. 测试数据准备

       åˆ›å»ºè¾“入表和输出表

       create table if not exists wc_in(line string);

       create table if not exists wc_out(key string, cnt bigint);

       é€šè¿‡tunnel将数据导入输入表中

       å¾…导入文本文件data.txt的数据内容如下:

       hello maxcompute

       hello mapreduce

       ä¾‹å¦‚可以通过如下命令将data.txt的数据导入wc_in中,

       tunnel upload data.txt wc_in;

       4. 准备好表与hdfs文件路径的映射关系配置

       é…ç½®æ–‡ä»¶å‘½åä¸ºï¼šwordcount-table-res.conf

       {

       "file:/foo": {

       "resolver": {

       "resolver": "c.TextFileResolver",

       "properties": {

       "text.resolver.columns.combine.enable": "true",

       "text.resolver.seperator": "\t"

       }

       },

       "tableInfos": [

       {

       "tblName": "wc_in",

       "partSpec": { },

       "label": "__default__"

       }

       ],

       "matchMode": "exact"

       },

       "file:/bar": {

       "resolver": {

       "resolver": "openmr.resolver.BinaryFileResolver",

       "properties": {

       "binary.resolver.input.key.class" : "org.apache.hadoop.io.Text",

       "binary.resolver.input.value.class" : "org.apache.hadoop.io.LongWritable"

       }

       },

       "tableInfos": [

       {

       "tblName": "wc_out",

       "partSpec": { },

       "label": "__default__"

       }

       ],

       "matchMode": "fuzzy"

       }

       }