1.Nginx源码分析 - 主流程篇 - Nginx的码脚启动流程
2.如何解决Nginx依赖的软件包问题并配置启动脚本?
3.NGINX脚本语言原理及源码分析(一)
4.nginx源码分析--master和worker进程模型
5.NGINX Location匹配原理及源码分析
6.Nginx源码分析 - HTTP模块篇 - TCP连接建立过程
Nginx源码分析 - 主流程篇 - Nginx的启动流程
文章内容包含对Nginx源码的基础理解,以及对其主流程的码脚深入分析。首先介绍了Nginx使用的码脚各种基础数据结构,如pool、码脚buf、码脚array、码脚avatar.swf 源码list等,码脚通过理解这些结构能更加深入地了解Nginx源码。码脚
接下来,码脚文章着重分析了Nginx的码脚启动流程,主要实现函数在./src/core/nginx.c文件中的码脚main()函数。文章展示了main()函数启动过程,码脚并详细解释了几个关键步骤。码脚
第一步,码脚是码脚通过ngx_get_options方法解析外部参数,比如命令行参数 ./nginx -s stop|start|restart。
第二步,初始化全局变量,其中init_cycle在内存池上创建一个默认大小为的全局变量,这一过程在ngx_init_cycle函数中完成,详细的全局变量初始化步骤会在后续的文章中展开。
第三步,通过ngx_save_argv和ngx_process_options保存头部的全局变量定义。
接着,使用ngx_preinit_modules方法对所有模块进行初始化,并给它们打上标号,这一过程在ngx_module.c文件中进行。
再一步,通过ngx_create_pidfile创建PID文件,文件管理在ngx_cycle.c文件中实现。
此外,文章还提到了Nginx中涉及的其他重要模块,指出这些模块的详细解析会在后续的文章中呈现。
总结,文章以实际代码为例,介绍了Nginx启动的regain 源码全流程,并对关键步骤进行了解释,为读者深入了解Nginx源码奠定了基础。
如何解决Nginx依赖的软件包问题并配置启动脚本?
Nginx,作为一款备受青睐的轻量级Web服务器,因其稳定性、高效和低资源消耗而备受瞩目。国内各大门户如新浪、网易、腾讯都采用了它。其稳定性源于其分阶段资源分配技术,能有效降低CPU和内存占用,为动态网站提供稳定环境。Nginx拥有丰富的模块支持,包括proxy、rewrite、mod_fcgi、ssl和vhosts等,且具备热部署功能,无需中断服务即可升级。虽然Nginx由俄罗斯开发,但凭借其高质量的代码和易扩展性,已逐渐克服资料文档不完善的问题。
安装Nginx前,需确保软件依赖,如Perl正则表达式库pcre,用于伪静态功能。以下是安装步骤:首先解压并编译pcre,接着安装openssl以支持加密证书,将openssl添加到PATH环境变量。同样,安装zlib以提供压缩功能。然后,创建一个名为www的用户账户,用于运行Nginx服务,并在编译Nginx时指定相关参数,virtuawin 源码如安装路径、用户和组等。
编译Nginx时,还需注意配置文件路径和软件源码包的解压路径。安装完成后,需要编写一个启动脚本,以在开机时自动启动Nginx,并提供重启、停止、重新加载等操作。脚本完成后,赋予执行权限并将其添加到系统启动项。
启动Nginx后,访问服务器IP即可看到简洁的默认页面,与Apache的红色默认页面形成对比。总的来说,配置Nginx服务既需要理解其功能和依赖,也需熟练掌握相关操作步骤,以确保高效稳定的服务运行。
NGINX脚本语言原理及源码分析(一)
NGINX提供了灵活的脚本解析功能,通过配置文件中的变量和指令实现特定功能。变量和指令是编程的基础,如若使用脚本语言,能提升配置的可扩展性,避免频繁添加新代码。
深入理解NGINX脚本语言,首先从变量的基本特性开始。在NGINX中,除了特殊类型的binary_remote_addr外,所有变量默认为字符串类型。变量名由美元符号或花括号包围,只接受特定字符(a-z、A-Z、0-9、_)。蓬莱 源码变量插入示例中,如set $def “this is a test $abc”,变量值会根据其他变量计算后再拼接。
NGINX变量分为内置和自定义两种,自定义变量由特定模块定义,如rewrite和geo模块。内置变量广泛覆盖系统、网络、四层、SSL/TLS和HTTP层信息,部分动态变量如arg_根据HTTP请求参数动态生成。
变量的作用域非常重要,未定义的变量在启动时会引发错误。全局可见的变量允许跨location使用,但每个请求有自己的变量实例。变量的可变性通过标记控制,如内置变量通常不可变,但如$args和$limit_rate可变。
关于缓存,变量的get_handler方法决定其是否实时计算。动态变量如$arg_name不可缓存,而set指令定义的变量可缓存。结合使用时,如"name"和"arg_name"可能产生不同结果,因为前者缓存,后者每次都从参数解析。
变量的隔离性基于请求,同一变量在不同请求间独立,如同C语言的局部和全局变量。NGINX内,变量值容器随请求而变化,与location无关。
后续文章将详细解析变量的实现原理和在脚本中的运用。对于更全面的NGINX资源,可访问NGINX开源社区获取。ibasedao源码
nginx源码分析--master和worker进程模型
一、Nginx整体架构
正常执行中的nginx会有多个进程,其中最基本的是master process(主进程)和worker process(工作进程),还可能包括cache相关进程。
二、核心进程模型
启动nginx的主进程将充当监控进程,主进程通过fork()产生的子进程则充当工作进程。
Nginx也支持单进程模型,此时主进程即是工作进程,不包含监控进程。
核心进程模型框图如下:
master进程
监控进程作为整个进程组与用户的交互接口,负责监护进程,不处理网络事件,不负责业务执行,仅通过管理worker进程实现重启服务、平滑升级、更换日志文件、配置文件实时生效等功能。
master进程通过sigsuspend()函数调用大部分时间处于挂起状态,直到接收到信号。
master进程通过检查7个标志位来决定ngx_master_process_cycle方法的运行:
sig_atomic_t ngx_reap;
sig_atomic_t ngx_terminate;
sig_atomic_t ngx_quit;
sig_atomic_t ngx_reconfigure;
sig_atomic_t ngx_reopen;
sig_atomic_t ngx_change_binary;
sig_atomic_t ngx_noaccept;
进程中接收到的信号对Nginx框架的意义:
还有一个标志位:ngx_restart,仅在master工作流程中作为标志位使用,与信号无关。
核心代码(ngx_process_cycle.c):
ngx_start_worker_processes函数:
worker进程
worker进程主要负责具体任务逻辑,主要关注与客户端或后端真实服务器之间的数据可读/可写等I/O交互事件,因此工作进程的阻塞点在select()、epoll_wait()等I/O多路复用函数调用处,等待数据可读/写事件。也可能被新收到的进程信号中断。
master进程如何通知worker进程进行某些工作?采用的是信号。
当收到信号时,信号处理函数ngx_signal_handler()会执行。
对于worker进程的工作方法ngx_worker_process_cycle,它主要关注4个全局标志位:
sig_atomic_t ngx_terminate;//强制关闭进程
sig_atomic_t ngx_quit;//优雅地关闭进程(有唯一一段代码会设置它,就是接受到QUIT信号。ngx_quit只有在首次设置为1时,才会将ngx_exiting置为1)
ngx_uint_t ngx_exiting;//退出进程标志位
sig_atomic_t ngx_reopen;//重新打开所有文件
其中ngx_terminate、ngx_quit、ngx_reopen都将由ngx_signal_handler根据接收到的信号来设置。ngx_exiting标志位仅由ngx_worker_cycle方法在退出时作为标志位使用。
核心代码(ngx_process_cycle.c):
NGINX Location匹配原理及源码分析
NGINX Location匹配原理及源码分析
在NGINX的服务器配置中,location机制至关重要,它负责根据请求的URI细分成不同的处理方式。正确配置location对生产环境中的服务分发至关重要。本文将深入解析location的配置指令、匹配流程以及源码实现。配置指令详解
location指令是核心配置,有多种定义形式,如使用前缀字符(=, ^~)或正则表达式(~, ~*)。=用于精确匹配,^~则在找到匹配后立即停止搜索。正则表达式的优先级高于前缀,但为提高效率,特殊修饰符有助于简化匹配过程。匹配流程
location匹配遵循最长匹配原则,从头开始遍历配置,首先匹配前缀,再进行正则匹配。一个典型例子是,/精准匹配A,/index.html匹配B,/user/路径匹配C或E,而/images/路径匹配D(^~修饰符影响)。配置文件的顺序决定了最终匹配。数据结构构建
匹配过程涉及到的数据结构包括ngx_http_core_loc_conf_s, ngx_http_location_queue_t等,它们通过ngx_http_init_locations函数进行初始化和排序,形成静态location树和正则表达式list,以便于高效查找。源码解析
location指令解析后,数据结构在ngx_http_find_config_phase阶段被查找,先在static_location树中进行二分查找,然后遍历regex配置。源码中的ngx_http_core_find_location函数是关键执行者。总结
location匹配是NGINX处理请求的核心环节,通过配置区分正则表达式和非正则表达式,利用最长匹配和优先匹配策略。理解这些原理有助于优化生产环境的location配置,提高性能。Nginx源码分析 - HTTP模块篇 - TCP连接建立过程
Nginx源码分析 - HTTP模块篇 - TCP连接建立过程
在上一章节中,我们已经了解了HTTP模块的初始化过程。本章节将深入剖析监听套接字的初始化函数以及Nginx连接的全程流程。 首先, ngx_http_optimize_servers 是关键函数,它负责Nginx服务监听套接字的优化配置。这个函数在Nginx启动时,会初始化并优化服务器的侦听策略。 紧接着, ngx_http_init_listening 和 ngx_http_add_listening 函数共同作用,创建和设置监听套接字(listening),为后续的网络连接做好准备。 理解了Event模块的进程初始化后,结合 ngx_http_optimize_servers 的工作,我们可以构建出Nginx连接的完整流程图。这个流程涉及服务器的监听,客户端的请求,以及两者之间的TCP连接建立。 让我们通过下面的流程概述来直观地理解:服务器通过 ngx_http_optimize_servers 函数设置监听套接字,等待客户端连接请求。
当客户端发起连接时,Nginx通过 ngx_http_add_listening 创建新的TCP连接。
通过Event模块的事件驱动,Nginx接收并处理客户端的HTTP请求,开始HTTP会话。
Nginx源码阅读(五):启动前的准备
在 Nginx 启动前,一系列初始化流程和变量设定至关重要。这些准备工作确保 Nginx 正常运行,高效管理资源并优化性能。接下来,我们将分步骤详细介绍 Nginx 启动前的准备过程。1. ngx_os_init 获取系统级资源
ngx_os_init 负责初始化操作系统级资源,将关键参数赋值给全局变量。这些参数包括页面大小、缓存行大小、最大套接字数等。 系统级参数获取依赖于 sysconf 函数,它用于查询系统特定参数,如 CPU 核心数量、内存大小、进程打开的最大文件数等。 _SC_NPROCESSORS_CONF返回 CPU 核心数量,包括不可用核心。
_SC_NPROCESSORS_ONLN返回系统中可用的 CPU 核心数量。
_SC_PAGESIZE表示系统页面大小(字节单位)。
_SC_PHYS_PAGES表示系统物理内存页数。
_SC_OPEN_MAX表示进程可以打开的最大文件数。
_SC_GETPW_R_SIZE_MAX表示 getpwuid_r 函数使用的缓冲区大小限制。
另一个关键函数 ngx_cpuinfo 用于获取 CPU 的 L2 缓存行大小。理解 CPU 缓存级别有助于优化 Nginx 性能。L1 缓存位于 CPU 核心内,是最快的缓存层。
L2 缓存在 CPU 芯片上,但比 L1 缓存距离核心更远。
L3 缓存位于 CPU 外部,速度仅次于内存,但大小较大。
不同 CPU 的缓存大小差异显著,如图所示。L1 和 L2 缓存通常在 CPU 核之间不共享,而 L3 缓存为所有核心共享。 此外,getrlimit 和 setrlimit 函数用于查询和更改进程资源限制。rlimit 结构体参数用于指定资源限制,如最大句柄数,即最大可创建的套接字数量。2. ngx_crc_table_init 初始化 CRC 表
此函数初始化循环冗余校验(CRC)表,确保计算效率。通过将指向校验表格的指针ngx_crc_table_short 对齐至缓存行大小,提高性能。 CRC 是一种用于检测数据传输或保存错误的校验方法。生成的数字附加至数据后,接收端进行验证以确保数据未变。具体原理可参考网络资料。3. ngx_add_inherited_sockets 继承套接字
在平滑升级场景下,ngx_add_inherited_sockets 用于继承原有监听套接字。通过环境变量 NGINX 获取套接字信息,将其加入 init_cycle 的 listening 数组。完成继承后,设置全局变量 ngx_inherited 为 1。 此函数仅在平滑升级过程中使用,通常情况下无需执行。因此,我们不对该函数进行过多讨论。Nginx源码交叉编译-保姆级移植ARM
在Ubuntu..7 位系统上,使用arm-linux-gnueabihf-gcc作为交叉编译器,针对arm内核4.1.和恩智浦imx6ul嵌入式平台,进行了一次详细的Nginx源码的交叉编译移植过程。
准备工作包括了下载Nginx(1..0)、pcre(8.)、zlib(1.3.1)和openssl(1.1.1)的最新版本。在编译过程中,作者尝试了openssl的3.0.版本,但遇到编译问题,最终选择1.1.1版本进行编译。
在进入Nginx源码目录后,需要对部分源码进行修改,如移除退出函数并调整size大小。增加PCRE配置后,对Nginx进行配置,如果不需要ssl,应移除相关部分。配置完成后生成Makefile,但在此阶段并未进行编译。
Pcre源码的处理包括切换目录、配置和编译,编译成功且无误。对于openssl(选配),需要确保安装路径设置正确,配置后删除部分Makefile内容,进行编译,可能需要清理缓存以解决编译问题。
在Nginx部分的后续操作中,添加了必要的定义以避免malloc未引用错误,并调整了Makefile以排除之前手动编译的影响。最后进行编译,安装完成后,检查可执行文件类型和大小,进行优化以减少调试信息,使文件减小至2.8M。
测试阶段,将编译后的文件复制到arm设备,通过修改配置文件解决报错后,成功运行并访问测试页面,完成了基础的移植工作。
2025-01-11 22:20
2025-01-11 22:11
2025-01-11 21:43
2025-01-11 21:37
2025-01-11 21:01
2025-01-11 20:23
2025-01-11 20:12
2025-01-11 19:53