1.腾讯T2I-adapter源码分析(1)-运行源码跑训练
2.OpenAI 开源的系统免费 AI 语音转文字工具 - Whisper,一步一步本地部署运行
3.带桌面推送Ai智能客服系统在线客服源码
4.OpenAI/Triton MLIR 第零章: 源码编译
5.腾讯T2I-adapter源码分析(3)-训练源码分析
6.图解UE4源码AI行为树系统 其二 一棵行为树是源码怎么被运行起来的
腾讯T2I-adapter源码分析(1)-运行源码跑训练
稳定扩散、midjourney等AI绘图技术,系统为人们带来了令人惊叹的源码效果,不禁让人感叹技术发展的系统日新月异。然而,源码京东溯源码查询AI绘图的系统可控性一直不是很好,通过prompt描述词来操控图像很难做到随心所欲。源码为了使AI绘制的系统图像更具可控性,Controlnet、源码T2I-adapter等技术应运而生。系统本系列文章将从T2I-adapter的源码源码出发,分析其实现方法。系统
本篇是源码第一篇,主要介绍源码的系统运行方法,后续两篇将以深度图为例,分别分析推理部分和训练部分的代码。分析T2I-Adapter,也是为了继续研究我一直在研究的课题:“AI生成同一人物不同动作”,例如:罗培羽:stable-diffusion生成同一人物不同动作的尝试(多姿势图),Controlnet、T2I-adapter给了我一些灵感,后续将进行尝试。
T2I-Adapter论文地址如下,它与controlnet类似,都是在原模型增加一个旁路,然后对推理结果求和。
T2I-Adapter和controlnet有两个主要的不同点,从图中可见,其一是在unet的编码阶段增加参数,而controlnet主要是解码阶段;其二是controlnet复制unit的上半部结构,而T2I-Adapter使用不同的模型结构。由于采用较小的模型,因此T2I-Adapter的叶子tv 源码模型较小,默认下占用M左右,而controlnet模型一般要5G空间。
首先确保机器上装有3.6版本以上python,然后把代码clone下来。随后安装依赖项,打开requirements.txt,可以看到依赖项的内容。然后下载示例,下载的会放到examples目录下。接着下载sd模型到model目录下,再下载T2I-Adapter的模型到目录下,模型可以按需到huggingface.co/TencentA...下载。这里我下载了depth和openpose。sd模型除了上述的v1-5,也还下载了sd-v1-4.ckpt。
根据文档,尝试运行一个由深度图生成的例子,下图的左侧是深度图,提示语是"desk, best quality, extremely detailed",右侧是生成出来的。运行过程比较艰辛,一开始在一台8G显存的服务器上跑,显存不够;重新搭环境在一台G显存的服务器上跑,还是不够;最后用一台G显存的服务器,终于运行起来了。
接下来尝试跑openpose的例子,下图左侧是骨架图,提示词为"Iron man, high-quality, high-res",右侧是生成的图像。
既然能跑推理,那么尝试跑训练。为了后续修改代码运行,目标是uefi修改源码准备一点点数据把训练代码跑起来,至于训练的效果不是当前关注的。程序中也有训练的脚步,我们以训练深度图条件为例,来运行train_depth.py。
显然,习惯了,会有一些问题没法直接运行,需要先做两步工作。准备训练数据,分析代码,定位到ldm/data/dataset_depth.py,反推它的数据集结构,然后准备对应数据。先创建文件datasets/laion_depth_meta_v1.txt,用于存放数据文件的地址,由于只是测试,我就只添加两行。然后准备,图中的.png和.png是结果图,.depth.png和.depth.png是深度图,.txt和.txt是对应的文本描述。
文本描述如下,都只是为了把代码跑起来而做的简单设置。设置环境变量,由于T2I-Adapter使用多卡训练,显然我也没这个环境,因此要让它在单机上跑。而代码中也会获取一些环境变量,因此做简单的设置。
做好准备工作,可以运行程序了,出于硬件条件限制,只能把batch size设置为1。faq检索 源码在A显卡跑了约8小时,完成,按默认的配置,模型保存experiments/train_depth/models/model_ad_.pth。那么,使用训练出来的模型试试效果,能生成如下(此处只是为了跑起来代码,用训练集来测试),验证了可以跑起来。
运行起来,但这还不够,我们还得看看代码是怎么写法,下一篇见。
PS:《直观理解AI博弈原理》是笔者写的一篇长文,从五子棋、象棋、围棋的AI演进讲起,从深度遍历、MAX-MIN剪枝再到蒙特卡罗树搜索,一步步介绍AI博弈的原理,而后引出强化学习方法,通俗易懂地介绍AlphaGo围棋、星际争霸强化学习AI、王者荣耀AI的一些强化学习要点,值得推荐。
AUTOMATIC的webui是近期很流行的stable-diffusion应用,它集合stable-diffusion各项常用功能,还通过扩展的形式支持controlnet、lora等技术,我们也分析了它的源码实现,写了一系列文章。
OpenAI 开源的免费 AI 语音转文字工具 - Whisper,一步一步本地部署运行
OpenAI 推出的源码内容清单开源免费工具 Whisper,以其出色的语音识别功能吸引了不少关注。这款模型不仅能够进行多语言的语音转文本,还能进行语音翻译和语言识别,实用价值极高。市面上许多语音转文字服务如讯飞语记等都收费,而Whisper作为开源选择,无疑是一个经济实惠且性能强大的解决方案。
想在本地体验Whisper,首先需要为Windows设备安装ffmpeg和rust。ffmpeg可以从ffmpeg.org下载并配置环境变量,而rust则可以从rust-lang.org获取并确保命令行可用。接着,创建一个python虚拟环境,安装Whisper所需的依赖库。
运行Whisper的过程相当直接。通过命令行,只需提供音频文件如"Haul.mp3",并指定使用"medium"模型(模型大小从tiny到large递增)。首次运行时,Whisper会自动下载并加载模型,然后开始识别并输出文本,同时将结果保存到文件中。如果想在Python代码中集成,也相当简单。
如果你对此技术感兴趣,不妨亲自尝试一下。项目的源代码可以在github.com/openai/whisper找到。这不仅是一次AI技术的体验,还可能开启语音转文字的新篇章。更多详情可参考gpt.com/article/的信息。
标签推荐:#AI技术 #OpenAI开源 #Whisper模型 #语音转文字 #ChatGPT应用
带桌面推送Ai智能客服系统在线客服源码
该系统集安全防护和国际化多语言功能于一身,确保了客户信息的安全性同时支持全球多语言交流,助力外贸新机遇。
采用Thinkphp5和Workerman框架,搭配Nginx、PHP7.3和MySQL5.6环境,构建稳定高效的服务平台。支持多商户客服模式,不限坐席数量,用户可独立运行系统,数据存储于自服务器上,提供SSL加密和离线对话功能。
系统更新日志涵盖多项功能优化,如新增桌面右下角悬浮推送,方便用户在进行其他操作时亦能即时回复客户消息。此外,聊天页面集成常见问题及品牌logo、公司简介,提升用户沟通效率。客服配置中心增设自定义上传广告及链接选项,增强个性化服务体验。会话页面允许用户上传背景,进一步定制化交互环境。
欲获取源代码,请访问客服系统.zip文件,存放于蓝奏云。
OpenAI/Triton MLIR 第零章: 源码编译
本文旨在深入探讨开源AI项目OpenAI Triton MLIR,着重介绍Triton作为编程语言与编译器在GPU加速计算领域的应用与优化。Triton为用户提供了一种全新的方式,通过将其后端接入LLVM IR,利用NVPTX生成GPU代码,进而提升计算效率。相较于传统CUDA编程,Triton无需依赖NVIDIA的nvcc编译器,直接生成可运行的机器代码,体现出其在深度学习与数据科学领域的高性能计算潜力。Triton不仅支持NVIDIA GPU,还计划扩展至AMD与Intel GPU,其设计基于MLIR框架,通过Dialect支持多样化后端。本文将从源码编译角度出发,逐步解析Triton的设计理念与优化策略,为研究编译技术和系统优化的工程师提供宝贵资源。
首先,需要访问Triton的官方网站,克隆其官方代码库,以便后续操作。构建过程涉及两个重要依赖:LLVM与pybind。LLVM作为Triton的核心后端,通过将高级Python代码逐步转换至LLVM IR,最终生成GPU可运行代码,体现了其在计算优化领域的优势。pybind组件则用于封装C++/CUDA或汇编代码,实现Python DSL与高性能组件的无缝集成。
接下来,将LLVM与pybind分别编译安装,通过手动配置指定路径,确保编译过程顺利进行。LLVM的安装对于基于Triton进行二次开发的工程师和研究人员至关重要,因为它为Triton提供了强大的计算基础。在特定的commit ID下编译Triton,确保与后续版本兼容。
在编译过程中,配置pybind同样至关重要,它允许用户通过Python API调用高性能组件,实现自动化生成高性能算子。完成编译后,生成的.so文件(libtriton.so)为后续Triton的Python接口提供了支持。
将libtriton.so移动至triton/python/triton/_C目录下,确保Python路径正确配置,实现无缝导入与调用。通过简单的import triton命令,即可开启Triton的开发之旅。验证Triton性能,可以选择tutorials目录下的示例代码,如-matrix-multiplication.py,通过运行该脚本,观察Triton在GPU上的性能表现。
Triton在NVGPU上的成熟映射路线,从抽象的Python DSL到贴近GPU层面的IR,最终生成高效机器代码,体现了其在高性能计算领域的优越性。Triton未来的发展蓝图将支持更多前端语言,对接不同硬件厂商的硬件,实现高效映射,满足多样化计算需求。
腾讯T2I-adapter源码分析(3)-训练源码分析
随着stable-diffusion和midjourney等AI技术展现令人惊叹的艺术创作,人们对AI可控绘图的追求日益高涨。为提升AI图像生成的可控性,Controlnet和T2I-adapter等解决方案应运而生。系列文章将从T2I-adapter的源码出发,深入剖析其训练部分的实现原理。
本篇我们将聚焦于训练源码的解析,通过代码结构的梳理,了解T2I-Adapter的训练流程。
训练代码的运行涉及数据处理、模型加载、优化器设置以及实际训练过程。在第一部分,我们首先设置参数并加载数据,如DepthDataset,它从txt文件中读取、对应的深度图和文本描述。
在模型加载阶段,我们区分了stable-diffusion模型和adapter。stable-diffusion模型加载时,其配置与推理阶段有所差异,如增加调度器参数、提高精度、调整分辨率和训练相关参数。adapter模型的加载则遵循推理过程中的初始化方法,通过构建不同模块来实现。
训练过程中,adapter模型的关键结构包括下采样、卷积和ResnetBlock的使用,相比controlnet,T2I-adapter的参数更少,没有注意力层,这使得训练更为高效。模型放入GPU后,使用adamW优化器进行训练,同时设置学习率和数据保存路径。
状态恢复部分,程序会判断是否从头开始或恢复训练,设置log信息。接下来,代码进入实际的训练循环,包括条件编码、隐藏状态生成、adapter结果附加至sd模型以及adapter梯度计算。
loss函数定义在模型配置中,采用L2损失来衡量生成图像与给定时间点加噪ground truth的接近程度。训练过程中,loss计算和模型保存都在代码中明确体现。
总的来说,T2I-adapter的训练源码展示了精细的结构和参数设置,确保了AI绘画的可控性和性能。在AI艺术的探索中,每一行代码都承载着技术进步的点滴痕迹。
图解UE4源码AI行为树系统 其二 一棵行为树是怎么被运行起来的
让我们深入理解UE4中AI行为树的运行机制。首先,行为树的运行流程大致分为以下几个步骤:发起执行: 可以通过AAIController::RunBehaviorTree()函数或Run Behavior任务节点启动新树。
抽象逻辑理解: 从Run Behavior任务节点出发,关键在于OwnerComp.PushInstance(*BehaviorAsset),这涉及子树的监控和结束条件。
检查与加载: 在运行前,UBehaviorTreeComponent会对子树资源、全局UBehaviorTreeManager、发起节点的父节点意愿进行检查。只有当所有条件满足,才会加载行为树资源。
内存计算与初始化: 加载后,通过FNodeInitializationData计算节点的执行顺序、内存需求,注入顶层decorator,然后设置初始值和内存偏移。
实例化与缓存: 将计算结果的树模板存入缓存,供后续使用。加载完成后,行为树实例会被添加到InstanceStack并标记为活跃。
新树加载并初始化完毕后,执行流程开始于根节点的服务调用和根节点的执行。每个节点的详细运行机制会在后续内容中进一步探讨。理解这些步骤有助于我们更好地掌握行为树的控制和执行逻辑。2025-01-24 13:49
2025-01-24 13:46
2025-01-24 13:29
2025-01-24 13:07
2025-01-24 12:51
2025-01-24 12:38