1.Python和Django的站源站实基于协同过滤算法的电影推荐系统源码及使用手册
Python和Django的基于协同过滤算法的电影推荐系统源码及使用手册
软件及版本
以下为开发相关的技术和软件版本:
服务端:Python 3.9
Web框架:Django 4
数据库:Sqlite / Mysql
开发工具IDE:Pycharm
**推荐系统算法的实现过程
本系统采用用户的历史评分数据与**之间的相似度实现推荐算法。
具体来说,码d码这是例源基于协同过滤(Collaborative Filtering)的一种方法,具体使用的站源站实是基于项目的协同过滤。
以下是码d码组卷源码系统推荐算法的实现步骤:
1. 数据准备:首先,从数据库中获取所有用户的例源网址导航整站源码评分数据,存储在Myrating模型中,站源站实包含用户ID、码d码**ID和评分。例源使用pandas库将这些数据转换为DataFrame。站源站实
2. 构建评分矩阵:使用用户的码d码评分数据构建评分矩阵,行代表用户,例源列代表**,站源站实nodejs网络爬虫源码矩阵中的码d码元素表示用户对**的评分。
3. 计算**相似度:计算**之间的例源相似度矩阵,通常通过皮尔逊相关系数(Pearson correlation coefficient)来衡量。
4. 处理新用户:对于新用户,mui项目实例源码推荐一个默认**(ID为的**),创建初始评分记录。
5. 生成推荐列表:计算其他用户的评分与当前用户的评分之间的相似度,使用这些相似度加权其他用户的跑车俱乐部网站源码评分,预测当前用户可能对未观看**的评分。
6. 选择推荐**:从推荐列表中选择前部**作为推荐结果。
7. 渲染推荐结果:将推荐的**列表传递给模板,并渲染成HTML页面展示给用户。
系统功能模块
主页**列表、**详情、**评分、**收藏、**推荐、注册、登录
项目文件结构核心功能代码
显示**详情评分及收藏功能视图、根据用户评分获取相似**、推荐**视图函数
系统源码及运行手册
下载并解压源文件后,使用Pycharm打开文件夹movie_recommender。
在Pycharm中,按照以下步骤运行系统:
1. 创建虚拟环境:在Pycharm的Terminal终端输入命令:python -m venv venv
2. 进入虚拟环境:在Pycharm的Terminal终端输入命令:venv\Scripts\activate.bat
3. 安装必须依赖包:在终端输入命令:pip install -r requirements.txt -i /simple
4. 运行程序:直接运行程序(连接sqllite数据库)或连接MySQL。