【c语言pow函数源码】【网站源码 php】【网站 php 源码】eigen源码安装

来源:java 手游源码

1.OCS2安装以及Hunter双足机器人仿真环境配置
2.Eigen的码安介绍、安装与入门操作
3.Python与C++混合开发(VisualStudio+PyBind11)
4.vs2019已经在vc++目录中加入eigen的码安目录为什么还是提示找
5.window 配置eigen3环境
6.双足机器人mc_rtc框架学习分享(1)BaselineWalkingController复现

eigen源码安装

OCS2安装以及Hunter双足机器人仿真环境配置

       随着腿足式机器人技术的不断发展,双足机器人成为了研究热点。码安其中,码安Hunter双足机器人由桥介数物和因克斯智能合作研发,码安其开源的码安c语言pow函数源码控制程序为学习者提供了便利。为了搭建Hunter双足机器人的码安仿真环境,首先需要安装和配置依赖环境。码安

       安装流程分为四个阶段:安装OCS2、码安安装相关库、码安配置Hunter工作环境以及问题排查与优化。码安

       阶段一:安装OCS2

       在安装OCS2前,码安确保已安装Ubuntu.版本的码安ROS,并根据OCS2官方文档完成所有依赖安装。码安具体步骤如下:

       检查C++编译器版本,码安通常不会存在问题。

       确保Eigen3版本大于3.3。

       在工作空间下创建OCS2文件夹,然后安装Boost C++。

       安装catkin,并根据实际版本替换官方文档中的命令。

       安装剩余依赖。

       阶段二:安装相关库

       安装过程中需确保安装了所有必需库。这包括但不限于Raisim库,需指定版本号进行安装。确保安装了checkinstall工具,完成Raisim库的编译与安装。

       阶段三:配置Hunter工作环境

       在建立Hunter工作空间后,下载源码并直接编译。在编译过程中可能出现的网站源码 php问题需逐一解决,如readline相关报错、pinocchio相关报错、以及依赖缺失等。

       阶段四:问题排查与优化

       在安装和配置过程中,可能会遇到多种问题。其中,读取行相关错误、pinocchio相关报错、以及依赖缺失等,需通过安装相应组件、重新编译以及优化环境变量解决。切记优先编译elevation_mapping_cupy包。

       在安装和配置过程中,遇到问题时,可以在线上社区寻求帮助或私信作者。后续将发布更多关于Hunter双足机器人的运行测试和代码分析。

       祝大家都能成功安装OCS2以及Hunter双足机器人仿真环境!

Eigen的介绍、安装与入门操作

       Eigen是一个C++的开源模板库,专用于线性代数运算,包括向量和矩阵操作,以及数值分析等。它以头文件形式存在,无需编译,只需在cpp文件中添加`#include "Eigen/Dense"`即可使用。

       安装与入门

       在Ubuntu Server .上,Eigen的安装有两条路径:通过apt命令或手动编译。

       1. apt命令安装

       虽然简单,但apt包更新较慢,网站 php 源码可能不是最新版本,这可能影响依赖于最新Eigen的库的使用。检查版本的命令是:`apt-cache policy eigen`。

       2. 手动编译安装

       从Eigen官网下载源码或使用wget,解压后进入目录,然后进行编译。安装成功后,可以通过编写并运行代码验证,如`MatrixXd matrix = MatrixXd::Random(2, 2); cout << matrix << endl;`。

       实例演示

       矩阵操作

       创建一个2x2矩阵,赋值并输出,如`MatrixXd m = MatrixXd::Random(2, 2); cout << m << endl;`。

       矩阵与向量

       定义一个3x3矩阵和3维向量,进行矩阵加常数和矩阵向量乘法,展示其运算结果。

       总结

       本文简要介绍了Eigen的基本概念、安装方法、头文件使用以及入门级的矩阵向量操作。深入学习Eigen,还有更多内容等待探索。

Python与C++混合开发(VisualStudio+PyBind)

       在开发过程中,Python与C++的混合使用可以通过Visual Studio和PyBind实现。本文将指导如何在Visual Studio中创建动态链接库,并通过PyBind为C++库添加Python接口,以便于Python调用。

       步骤如下:

       1. 创建一个Visual Studio的C++动态链接库项目,详细步骤可参考作者之前的文章。

       2. 在GitHub上下载pybind(版本2..1)和Eigen(版本3.4.0)的源码,将它们解压缩并放入项目文件的php 源码网站deps文件夹。

       3. 配置项目属性,包括添加包含目录(添加Python和Eigen库路径),库目录(Python的lib文件夹),以及预处理器和链接器的设置,确保链接python3.lib或python.lib。

       4. 编写C++源代码,如include/common.h、transform_2d.h和src/transform_2d.cpp,同时在python/akai.cpp中定义Python模块和接口。

       5. 在工程中生成akai.pyd动态链接库,通过重新生成项目并查看日志确认库的生成。

       6. 在AKAI/example文件夹中,通过终端运行jupyter notebook,并编写Python脚本,导入akai的tf2d模块,调用RotationMatrix函数,验证接口的正确性。

       完成以上步骤后,你将能够在Visual Studio中成功混合使用Python和C++,并利用PyBind建立两者间的交互。

vs已经在vc++目录中加入eigen的目录为什么还是提示找

       欲在Visual Studio 中集成著名的矩阵运算库Eigen,本文提供详细步骤。首先,访问Eigen官网下载3.3.8版本源码。在Visual Studio中创建空项目。为简化管理,不勾选将解决方案和项目置于同一目录选项,以确保文件结构清晰。创建src、网站php源码include、deps、config等文件夹,Eigen源码置于deps/eigen目录下。

       配置项目属性,添加Eigen目录。在项目属性页中选择C/C++标签进行调整,确保文件夹路径正确设置。创建test_eigen.cpp文件进行代码测试,验证配置是否正确。若项目多于一个,例如Project2,需将Eigen目录添加至其C/C++属性页的附加包含目录中,并确保路径相对项目文件夹。创建Project2/src目录,添加测试代码,并设置Project2为启动项,运行以验证配置。

       总结,本文详细阐述了如何在Visual Studio 中集成Eigen库,并说明了处理多项目情况的方法。此过程对于集成其他库应具相似性。欢迎关注个人网站以及GzH: SLAM学习er,作者将持续更新更多内容。

window 配置eigen3环境

       在VS 、CMake 3..2和GCC/G++ 8.1的环境中配置Eigen3库的步骤如下:

       首先,从官网下载Eigen3源码包。

       接着,进行解压操作以准备编译。

       进入步骤3,编译并安装。执行以下命令:

       创建一个名为"build"的目录。

       切换到该目录。

       使用CMake构建库:运行`cmake ..`。默认安装路径为C:\Program Files (x)\Eigen3,但为了便于管理,可以选择将安装文件复制到D盘,并移除C盘原有的文件。

       Eigen3是一个模板库,主要包含头文件和xx.cmake文件,不包含预编译的库。

       在进行测试时,需要编写测试文件。创建一个cmakeLists.txt和一个main.cpp文件。

       继续测试步骤,你可以选择以下两种方法:

       创建新的"build"目录,切换并运行`cmake ..`。这将生成一个Visual Studio解决方案文件,用于在VS中进行工程操作。

       或者,如果使用MinGW Makefiles,执行`cmake .. -G "MinGW Makefiles"`后,进行`make`,直接生成可执行文件。

双足机器人mc_rtc框架学习分享(1)BaselineWalkingController复现

       双足机器人mc_rtc框架学习分享(1):BaselineWalkingController复现详解

       mc_rtc是连接仿真软件与双足机器人操作系统的桥梁,通过MCGlobalController类实现数据交互,控制器需基于MCController基类进行定制。本文将带你逐步复现AIST实验室的BaselineWalkingController控制器。

       首先,通过官网或docker进行安装,curl或源码安装均有介绍,注意根据ROS版本调整。遇到编译问题时,如cmake共享模块导入失败或fastcdr库缺失,都有详细解决办法。

       接着,从GitHub下载BaselineWalkingController源码,并确保cmake共享模块成功导入。控制器的依赖项,如osqp和osqp-eigen,需要分别安装。编译过程中可能耗时,耐心等待即可。

       控制器配置文件需要复制到mc_rtc扫描路径,同时,可选择安装Choreonoid仿真软件进行操作。有两种使用方法:Choreonoid配合rviz,或仅使用rviz进行控制。

       关于控制器的使用,只需在mc_rtc面板中选择BWC,启动后可通过GuiWalk面板进行步行操作。若遇到错误,如firstOrderImpedance重复加载,需更新控制器或mc_rtc库。

       此外,choreonoid启动时的错误通常与mc_rtc库版本不匹配有关,更新库并检查所有依赖即可。自定义Attitude观察器的安装问题也给出了解决方法。

       源码安装时,如SpaceVecAlg安装失败,检查网络或按照提示操作。添加mc_rtc源时的网络问题,也给出了相应的解决策略。

Eigen3不同版本切换

       在探索SLAM技术的过程中,版本问题常常成为编译挑战的关键。为此,我整理了一篇关于Eigen版本切换的实用指南,帮助你在不同项目中轻松转换。让我们从apt-get安装开始,它是最常用且便捷的方式:

       首先,你可以使用sudo apt-get install libeigen3-dev命令,apt-get的安装路径通常在/usr/include下的eigen3文件夹中(见下图)。

       如果你需要特定版本,如Eigen3.3.9,源码编译是你的选择。以这个版本为例:

       首先,从GitHub或GitLab下载所需的版本,比如:

       # git clone /libeigen/eigen.git

       wget /libeigen/eigen/-/archive/3.3.9/eigen-3.3.9.zip

       unzip eigen-3.3.9.zip

       cd eigen-3.3.9

       mkdir build && cd build

       cmake -DCMAKE_INSTALL_PREFIX=~/eigen_output ..

       make && make install

       编译完成后,你将在~/eigen_output目录下找到eigen3库。之后,将生成的库文件重命名,如sudo mv eigen3 eigen,便于版本区分。

       Ubuntu系统通过eigen3.pc文件管理版本查找。apt-get安装的版本位于/usr/share/pkgconfig,而源码编译的版本在安装目录的share/pkgconfig。对比两者,确保保留适当的eigen3.pc文件,修改Version行指向所需的版本,然后重命名eigen3路径:

       执行如下命令进行版本切换:sudo mv eigen3 eigen,将当前版本重命名;sudo mv eigen eigen3,将新版本设置为主用。这样,通过路径重定向,版本切换顺利完成。

       如果你在实际操作中遇到问题,这个指南希望能作为参考。祝你在Eigen版本管理上得心应手!

       (注意:以上内容旨在提供指导,实际操作时请确保对文件和路径有充分的理解,以避免可能的冲突。)

ORB-SLAM2 的编译运行(ubuntu.)以及ROS1安装

       在 Ubuntu . 环境中,编译并运行 ORB-SLAM2 需要一系列的准备工作和库的安装。首先,确保已安装了所需的依赖项,然后按照指定链接从 GitHub 下载并安装 Pangolin-0.6 稳定版。

       接着,进行 OpenCV-3.4.5 的安装,包括下载、配置编译环境和查询版本信息以验证安装是否成功。对于 Eigen3,建议源码安装默认的 Eigen 版本(3.3.9),并将其头文件复制到相应目录以确保正常工作。若需要使用特定版本(如3.3.7),需手动安装并调整位置。

       在编译 ORB-SLAM2 时,需处理常见的报错,例如在 `System.h` 中添加 `#include` 以解决 `usleep` 报错,并根据特定链接调整 `LoopClosing.h` 文件中的代码以解决第二个报错。第三个报错需删除 `CMakeCache.txt` 文件并重新执行 `cmake ..` 和 `make` 命令。

       成功编译后,需在特定目录下运行 ORB-SLAM2,确保使用正确的终端打开以找到可执行文件。此外,安装 ROS1 可以通过一键安装工具完成,注意管理日志目录的大小以避免警告。在安装完成后,启动 ROS Master、小海龟仿真器和海龟控制节点,以验证 ROS1 是否已成功安装。

       安装过程中可能遇到的问题包括 ROS 目录的位置和库查找问题,以及如何在编译 ORB-SLAM2 时指定依赖目录。通过将 ROS 目录添加到环境变量(如 `PYTHONPATH` 或 `LD_LIBRARY_PATH`)中,可以解决这些问题并确保库的正确查找。

文章所属分类:知识频道,点击进入>>