皮皮网

【商城源码商业免费】【python代源码】【说谱源码】hashmapput源码

时间:2025-01-24 01:01:53 来源:idea怎样导入源码

1.HashMap为什么不安全?
2.结合源码探究HashMap初始化容量问题
3.ConcurrentHashMap确实很复杂,源码这样学源码才简单
4.idea debug进入HashMap源码时传参不正确?
5.HashMap实现原理一步一步分析(1-put方法源码整体过程)
6.concurrenthashmap1.8源码如何详细解析?源码

hashmapput源码

HashMap为什么不安全?

       æˆ‘们都知道HashMap是线程不安全的,在多线程环境中不建议使用,但是其线程不安全主要体现在什么地方呢,本文将对该问题进行解密。

       1.jdk1.7中的HashMap

       åœ¨jdk1.8中对HashMap做了很多优化,这里先分析在jdk1.7中的问题,相信大家都知道在jdk1.7多线程环境下HashMap容易出现死循环,这里我们先用代码来模拟出现死循环的情况:

       public class HashMapTest {     public static void main(String[] args) {         HashMapThread thread0 = new HashMapThread();        HashMapThread thread1 = new HashMapThread();        HashMapThread thread2 = new HashMapThread();        HashMapThread thread3 = new HashMapThread();        HashMapThread thread4 = new HashMapThread();        thread0.start();        thread1.start();        thread2.start();        thread3.start();        thread4.start();    }}class HashMapThread extends Thread {     private static AtomicInteger ai = new AtomicInteger();    private static Map map = new HashMap<>();    @Override    public void run() {         while (ai.get() < ) {             map.put(ai.get(), ai.get());            ai.incrementAndGet();        }    }}

       ä¸Šè¿°ä»£ç æ¯”较简单,就是开多个线程不断进行put操作,并且HashMap与AtomicInteger都是全局共享的。

       åœ¨å¤šè¿è¡Œå‡ æ¬¡è¯¥ä»£ç åŽï¼Œå‡ºçŽ°å¦‚下死循环情形:

       å…¶ä¸­æœ‰å‡ æ¬¡è¿˜ä¼šå‡ºçŽ°æ•°ç»„越界的情况:

       è¿™é‡Œæˆ‘们着重分析为什么会出现死循环的情况,通过jps和jstack命名查看死循环情况,结果如下:

       ä»Žå †æ ˆä¿¡æ¯ä¸­å¯ä»¥çœ‹åˆ°å‡ºçŽ°æ­»å¾ªçŽ¯çš„位置,通过该信息可明确知道死循环发生在HashMap的扩容函数中,根源在transfer函数中,jdk1.7中HashMap的transfer函数如下:

       void transfer(Entry[] newTable, boolean rehash) {         int newCapacity = newTable.length;        for (Entry e : table) {             while(null != e) {                 Entry next = e.next;                if (rehash) {                     e.hash = null == e.key ? 0 : hash(e.key);                }                int i = indexFor(e.hash, newCapacity);                e.next = newTable[i];                newTable[i] = e;                e = next;            }        }    }

       æ€»ç»“下该函数的主要作用:

       åœ¨å¯¹table进行扩容到newTable后,需要将原来数据转移到newTable中,注意-行代码,这里可以看出在转移元素的过程中,使用的是头插法,也就是链表的顺序会翻转,这里也是形成死循环的关键点。

       ä¸‹é¢è¿›è¡Œè¯¦ç»†åˆ†æžã€‚

       1.1 扩容造成死循环分析过程

       å‰ææ¡ä»¶ï¼Œè¿™é‡Œå‡è®¾ï¼š

       hash算法为简单的用key mod链表的大小。

       æœ€å¼€å§‹hash表size=2,key=3,7,5,则都在table[1]中。

       ç„¶åŽè¿›è¡Œresize,使size变成4。

       æœªresize前的数据结构如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       å¦‚果在单线程环境下,最后的结果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       è¿™é‡Œçš„转移过程,不再进行详述,只要理解transfer函数在做什么,其转移过程以及如何对链表进行反转应该不难。

       ç„¶åŽåœ¨å¤šçº¿ç¨‹çŽ¯å¢ƒä¸‹ï¼Œå‡è®¾æœ‰ä¸¤ä¸ªçº¿ç¨‹A和B都在进行put操作。线程A在执行到transfer函数中第行代码处挂起,因为该函数在这里分析的地位非常重要,因此再次贴出来。

       è¯·ç‚¹å‡»è¾“入图片描述

       æ­¤æ—¶çº¿ç¨‹A中运行结果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       çº¿ç¨‹A挂起后,此时线程B正常执行,并完成resize操作,结果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       è¿™é‡Œéœ€è¦ç‰¹åˆ«æ³¨æ„çš„点:由于线程B已经执行完毕,根据Java内存模型,现在newTable和table中的Entry都是主存中最新值:7.next=3,3.next=null。

       æ­¤æ—¶åˆ‡æ¢åˆ°çº¿ç¨‹A上,在线程A挂起时内存中值如下:e=3,next=7,newTable[3]=null,代码执行过程如下:

newTable[3]=e ----> newTable[3]=3e=next ----> e=7

       æ­¤æ—¶ç»“果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       ç»§ç»­å¾ªçŽ¯ï¼š

e=7next=e.next ----> next=3【从主存中取值】e.next=newTable[3] ----> e.next=3【从主存中取值】newTable[3]=e ----> newTable[3]=7e=next ----> e=3

       ç»“果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       å†æ¬¡è¿›è¡Œå¾ªçŽ¯ï¼š

e=3next=e.next ----> next=nulle.next=newTable[3] ----> e.next=7 å³ï¼š3.next=7newTable[3]=e ----> newTable[3]=3e=next ----> e=null

       æ³¨æ„æ­¤æ¬¡å¾ªçŽ¯ï¼še.next=7,而在上次循环中7.next=3,出现环形链表,并且此时e=null循环结束。

       ç»“果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       åœ¨åŽç»­æ“ä½œä¸­åªè¦æ¶‰åŠè½®è¯¢hashmap的数据结构,就会在这里发生死循环,造成悲剧。

       1.2 扩容造成数据丢失分析过程

       éµç…§ä¸Šè¿°åˆ†æžè¿‡ç¨‹ï¼Œåˆå§‹æ—¶ï¼š

       è¯·ç‚¹å‡»è¾“入图片描述

       çº¿ç¨‹A和线程B进行put操作,同样线程A挂起:

       è¯·ç‚¹å‡»è¾“入图片描述

       æ­¤æ—¶çº¿ç¨‹A的运行结果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       æ­¤æ—¶çº¿ç¨‹B已获得CPU时间片,并完成resize操作:

       è¯·ç‚¹å‡»è¾“入图片描述

       åŒæ ·æ³¨æ„ç”±äºŽçº¿ç¨‹B执行完成,newTable和table都为最新值:5.next=null。

       æ­¤æ—¶åˆ‡æ¢åˆ°çº¿ç¨‹A,在线程A挂起时:e=7,next=5,newTable[3]=null。

       æ‰§è¡Œnewtable[i]=e,就将7放在了table[3]的位置,此时next=5。接着进行下一次循环:

e=5next=e.next ----> next=null,从主存中取值e.next=newTable[1] ----> e.next=5,从主存中取值newTable[1]=e ----> newTable[1]=5e=next ----> e=null

       å°†5放置在table[1]位置,此时e=null循环结束,3元素丢失,并形成环形链表。并在后续操作hashmap时造成死循环。

       è¯·ç‚¹å‡»è¾“入图片描述

       2.jdk1.8中HashMap

       åœ¨jdk1.8中对HashMap进行了优化,在发生hash碰撞,不再采用头插法方式,而是直接插入链表尾部,因此不会出现环形链表的情况,但是在多线程的情况下仍然不安全,这里我们看jdk1.8中HashMap的put操作源码:

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                   boolean evict) {         Node[] tab; Node p; int n, i;        if ((tab = table) == null || (n = tab.length) == 0)            n = (tab = resize()).length;        if ((p = tab[i = (n - 1) & hash]) == null) // å¦‚果没有hash碰撞则直接插入元素            tab[i] = newNode(hash, key, value, null);        else {             Node e; K k;            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                e = p;            else if (p instanceof TreeNode)                e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);            else {                 for (int binCount = 0; ; ++binCount) {                     if ((e = p.next) == null) {                         p.next = newNode(hash, key, value, null);                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                            treeifyBin(tab, hash);                        break;                    }                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        break;                    p = e;                }            }            if (e != null) {  // existing mapping for key                V oldValue = e.value;                if (!onlyIfAbsent || oldValue == null)                    e.value = value;                afterNodeAccess(e);                return oldValue;            }        }        ++modCount;        if (++size > threshold)            resize();        afterNodeInsertion(evict);        return null;    }

       è¿™æ˜¯jdk1.8中HashMap中put操作的主函数, 注意第6行代码,如果没有hash碰撞则会直接插入元素。

       å¦‚果线程A和线程B同时进行put操作,刚好这两条不同的数据hash值一样,并且该位置数据为null,所以这线程A、B都会进入第6行代码中。

       å‡è®¾ä¸€ç§æƒ…况,线程A进入后还未进行数据插入时挂起,而线程B正常执行,从而正常插入数据,然后线程A获取CPU时间片,此时线程A不用再进行hash判断了,问题出现:线程A会把线程B插入的数据给覆盖,发生线程不安全。

       æ€»ç»“

       é¦–å…ˆHashMap是线程不安全的,其主要体现:

       åœ¨jdk1.7中,在多线程环境下,扩容时会造成环形链或数据丢失。

       åœ¨jdk1.8中,在多线程环境下,会发生数据覆盖的情况。

结合源码探究HashMap初始化容量问题

       探究HashMap初始化容量问题

       在深入研究HashMap源码时,有一个问题引人深思:为何在知道需要存储n个键值对时,源码我们通常会选择初始化容量为capacity = n / 0. + 1?

       本文旨在解答这一疑惑,源码适合具备一定HashMap基础知识的源码读者。请在阅读前,源码商城源码商业免费思考以下问题:

       让我们通过解答这些问题,源码逐步展开对HashMap初始化容量的源码深入探讨。

       源码探究

       让我们从实际代码出发,源码通过debug逐步解析HashMap的源码初始化逻辑。

       举例:初始化一个容量为9的源码HashMap。

       执行代码后,源码我们发现初始化容量为,源码且阈值threshold设置为。源码

       解析

       通过debug,源码我们首先关注到构造方法中的初始化逻辑。注意到,初始化阈值时,实际调用的是`tabliSizeFor(int n)`方法,它返回第一个大于等于n的2的幂。例如,`tabliSizeFor(9)`返回,`tabliSizeFor()`返回,`tabliSizeFor(8)`返回8。

       继续解析

       在构造方法结束后,我们通过debug继续追踪至`put`方法,直至`putVal`方法。

       在`putVal`方法中,我们发现当第一次调用`put`时,table为null,从而触发初始化逻辑。在初始化过程中,关键在于`resize()`方法中对新容量`newCap`的初始化,即等于构造方法中设置的python代源码阈值`threshold`()。

       阈值更新

       在初始化后,我们进一步关注`updateNewThr`的代码逻辑,发现新的阈值被更新为新容量乘以负载因子,即 * 0.。

       案例分析

       举例:初始化一个容量为8的HashMap。

       解答:答案是8,因为`tableSizeFor`方法返回大于等于参数的2的幂,而非严格大于。

       扩容问题

       举例:当初始化容量为时,放入9个不同的entry是否会引发扩容。

       解答:不会,因为扩容条件与阈值有关,当map中存储的键值对数量大于阈值时才触发扩容。根据第一问,初始化容量是,阈值为 * 0. = 9,我们只放了9个,因此不会引起扩容。

       容量选择

       举例:已知需要存储个键值对,如何选择合适的初始化容量。

       解答:初始化容量的目的是减少扩容次数以提高效率并节省空间。选择容量时,应考虑既能防止频繁扩容又能充分利用空间。具体选择取决于实际需求和预期键值对的数量。

       总结

       通过本文的探讨,我们深入了解了HashMap初始化容量背后的逻辑和原因。希望这些解析能够帮助您更深入地理解HashMap的内部工作原理。如果您对此有任何疑问或不同的见解,欢迎在评论区讨论。

       最后,如有帮助,欢迎点赞分享。

ConcurrentHashMap确实很复杂,说谱源码这样学源码才简单

       ConcurrentHashMap相较于HashMap在实现上更为复杂,主要涉及多线程环境下的并发安全、同步和锁的概念。虽然HashMap的原理主要围绕数组、链表、哈希碰撞和扩容,但在多线程场景下,这些知识还不够,需要对并发和同步有深入理解。

       在实际编程中,HashMap经常被使用,而ConcurrentHashMap的使用频率却相对较低,这使得学习它的门槛变高。学习ConcurrentHashMap之前,关键在于理解HashMap的基本实现,特别是它在非线程安全情况下的操作,如数组初始化和putVal()方法。

       HashMap的线程不安全问题主要表现在数组的懒加载和带if判断的put操作上,这可能导致数据一致性问题。为了解决这些问题,像HashTable和Collections.synchronizedMap()通过synchronized关键字加锁,但会导致性能下降。ConcurrentHashMap引入了CAS(Compare And Swap)技术,比如在initTable()方法中,通过volatile修饰的成员变量保证了数组初始化的线程安全。

       ConcurrentHashMap在数组初始化、下标为空时使用CAS,而在有冲突时切换到synchronized,降低了锁的粒度,以提高效率。扩容是ConcurrentHashMap的难点,需要处理新旧数组的同步迁移问题,通过helpTransfer()方法和transfer()方法来确保线程安全。dpdk源码包

       总结来说,学习ConcurrentHashMap不仅是对HashMap知识的扩展,更是进入并发编程世界的重要一步。面试时,如果只问基本数据结构,那可能只需要了解HashMap;但若深入到ConcurrentHashMap,就涉及到了并发编程的核心技术,如CAS、同步和锁的管理。

idea debug进入HashMap源码时传参不正确?

       我测试了下面的代码:

       分别在这四个位置打了断点以监控程序的运行情况,debug后,进入第一次断点的位置为:

       与题主说的情况一致,而没有进入我的第一个断点进行输出,而后F9:

       发现还是在put文件,经多次F9之后,可以看出来,其实java的jvm在启动的时候,在底层也自行调用的put方法,将jvm所需要的一些动态库、jar包put到某个map之中,具体是哪个map看不出来。要等到jvm底层将所有东西准备好后,才进行main函数。

       jvm准备需要put多少次我就不数了,现在我先把put的断点取消,让程序debug到我的第一个断点处:

       这个时候将put方法打上断点,F9发现:

       奇怪的key值增加了,它将我的classes编译目录丢进去了,继续F9,和上一步差不多,再再次F9,终于来了:

       继续F9,终于到达了我的qt源码路径第二个断点:

       继续F9,这次没有put奇怪的东西了:

       继续:

       最后:

       然后程序退出:

       综上,jvm在启动的时候会在程序背后隐式地将一些配置啊什么的通过put方法放到某些地方,不用关心,你遇到的情况是正常的也是正确的

HashMap实现原理一步一步分析(1-put方法源码整体过程)

       本文分享了HashMap内部的实现原理,重点解析了哈希(hash)、散列表(hash table)、哈希码(hashcode)以及hashCode()方法等基本概念。

       哈希(hash)是将任意长度的输入通过散列算法转换为固定长度输出的过程,建立一一对应关系。常见算法包括MD5加密和ASCII码表。

       散列表(hash table)是一种数据结构,通过关键码值映射到表中特定位置进行快速访问。

       哈希码(hashcode)是散列表中对象的存储位置标识,用于查找效率。

       Object类中的hashCode()方法用于获取对象的哈希码值,以在散列存储结构中确定对象存储地址。

       在存储字母时,使用哈希码值对数组大小取模以适应存储范围,防止哈希碰撞。

       HashMap在JDK1.7中使用数组+链表结构,而JDK1.8引入了红黑树以优化性能。

       HashMap内部数据结构包含数组和Entry对象,数组用于存储Entry对象,Entry对象用于存储键值对。

       在put方法中,首先判断数组是否为空并初始化,然后计算键的哈希码值对数组长度取模,用于定位存储位置。如果发生哈希碰撞,使用链表解决。

       本文详细介绍了HashMap的存储机制,包括数组+链表的实现方式,以及如何处理哈希碰撞。后续文章将继续深入探讨HashMap的其他特性,如数组长度的优化、多线程环境下的性能优化和红黑树的引入。

concurrenthashmap1.8源码如何详细解析?

       ConcurrentHashMap在JDK1.8的线程安全机制基于CAS+synchronized实现,而非早期版本的分段锁。

       在JDK1.7版本中,ConcurrentHashMap采用分段锁机制,包含一个Segment数组,每个Segment继承自ReentrantLock,并包含HashEntry数组,每个HashEntry相当于链表节点,用于存储key、value。默认支持个线程并发,每个Segment独立,互不影响。

       对于put流程,与普通HashMap相似,首先定位至特定的Segment,然后使用ReentrantLock进行操作,后续过程与HashMap基本相同。

       get流程简单,通过hash值定位至segment,再遍历链表找到对应元素。需要注意的是,value是volatile的,因此get操作无需加锁。

       在JDK1.8版本中,线程安全的关键在于优化了put流程。首先计算hash值,遍历node数组。若位置为空,则通过CAS+自旋方式初始化。

       若数组位置为空,尝试使用CAS自旋写入数据;若hash值为MOVED,表示需执行扩容操作;若满足上述条件均不成立,则使用synchronized块写入数据,同时判断链表或转换为红黑树进行插入。链表操作与HashMap相同,链表长度超过8时转换为红黑树。

       get查询流程与HashMap基本一致,通过key计算位置,若table对应位置的key相同则返回结果;如为红黑树结构,则按照红黑树规则获取;否则遍历链表获取数据。

我说HashMap初始容量是,面试官让我回去等通知

       HashMap是工作和面试中常见的数据类型,但很多人只停留在会用的层面,对它的底层实现原理并不深入理解。让我们一起深入浅出地解析HashMap的底层实现。

       考虑以下面试问题,你能完整回答几个呢?

       1. HashMap的底层数据结构是什么?

       JDK1.7使用数组+链表,通过下标快速查询,解决哈希冲突。JDK1.8进行了优化,引入了红黑树,查询效率提升到O(logn)。在JDK1.8中,数组+链表+红黑树结构,当链表长度达到8,并且数组长度大于时,链表会转换为红黑树。

       2. HashMap的初始容量是多少?

       在JDK1.7中,初始容量为,但在JDK1.8中,初始化时并未指定容量,而是在首次执行put操作时才初始化容量。初始化时仅指定了负载因子大小。

       3. HashMap的put方法流程是怎样的?

       源码揭示了put方法的流程,包括哈希计算、桶定位、插入或替换操作等。

       4. HashMap为何要设置容量为2的倍数?

       为了更高效地计算key对应的数组下标位置,当数组长度为2的倍数时,可以通过逻辑与运算快速计算下标位置,比取模运算更快。

       5. HashMap为何线程不安全?

       因为HashMap的所有修改方法均未加锁,导致在多线程环境下无法保证数据的一致性和安全性。例如,一个线程删除key后,其他线程可能还无法察觉,导致数据不一致;在扩容时,另一个线程可能添加元素,但由于没有加锁,元素可能丢失,影响数据安全性。

       6. 解决哈希冲突的方法有哪些?

       常见的方法包括链地址法、线性探测法、再哈希法等。

       7. JDK1.8扩容流程有何优化?

       JDK1.7在扩容时会遍历原数组,重新哈希,计算新数组下标,效率较低。而JDK1.8则优化了流程,只遍历原数组,通过新旧数组下标映射减少操作,提高了效率。

       推荐阅读:《我爱背八股系列》

       面试官问关于订单ID、分库分表、分布式锁、消息队列、MySQL索引、锁原理、查询性能优化等八股文问题时,幸亏有总结的全套八股文。

       以上内容是关于HashMap的深入解析和面试常见问题的解答,希望能够帮助到大家。

List LinkedList HashSet HashMap底层原理剖析

       ArrayList底层数据结构采用数组。数组在Java中连续存储,因此查询速度快,时间复杂度为O(1),插入数据时可能会慢,特别是需要移动位置时,时间复杂度为O(N),但末尾插入时时间复杂度为O(1)。数组需要固定长度,ArrayList默认长度为,最大长度为Integer.MAX_VALUE。在添加元素时,如果数组长度不足,则会进行扩容。JDK采用复制扩容法,通过增加数组容量来提升性能。若数组较大且知道所需存储数据量,可设置数组长度,或者指定最小长度。例如,设置最小长度时,扩容长度变为原有容量的1.5倍,从增加到。

       LinkedList底层采用双向列表结构。链表存储为物理独立存储,因此插入操作的时间复杂度为O(1),且无需扩容,也不涉及位置挪移。然而,查询操作的时间复杂度为O(N)。LinkedList的add和remove方法中,add默认添加到列表末尾,无需移动元素,相对更高效。而remove方法默认移除第一个元素,移除指定元素时则需要遍历查找,但与ArrayList相比,无需执行位置挪移。

       HashSet底层基于HashMap。HashMap在Java 1.7版本之前采用数组和链表结构,自1.8版本起,则采用数组、链表与红黑树的组合结构。在Java 1.7之前,链表使用头插法,但在高并发环境下可能会导致链表死循环。从Java 1.8开始,链表采用尾插法。在创建HashSet时,通常会设置一个默认的负载因子(默认值为0.),当数组的使用率达到总长度的%时,会进行数组扩容。HashMap的put方法和get方法的源码流程及详细逻辑可能较为复杂,涉及哈希算法、负载因子、扩容机制等核心概念。

推荐资讯
一名检察官蒙冤入狱背后:民企老板与经侦支队长的交易

一名检察官蒙冤入狱背后:民企老板与经侦支队长的交易

菲船隻在仙賓礁潟湖非法滯留 外交部:要求菲方立即撤出有關船隻

菲船隻在仙賓礁潟湖非法滯留 外交部:要求菲方立即撤出有關船隻

俄方已就「北溪」管道爆炸調查向德國提出相關要求

俄方已就「北溪」管道爆炸調查向德國提出相關要求

凌晨6.1、5.8地震「9縣市國家警報大響」 地震中心:0403餘震序列

凌晨6.1、5.8地震「9縣市國家警報大響」 地震中心:0403餘震序列

江苏南京:加强菜市场“生鲜灯”监管

江苏南京:加强菜市场“生鲜灯”监管

美國兩党副總統候選人定於10月初進行辯論

美國兩党副總統候選人定於10月初進行辯論

copyright © 2016 powered by 皮皮网   sitemap