教你阅读 Cpython 的源码(一)
目录1. CPython 介绍
在Python使用中,你是分析否曾好奇字典查找为何比列表遍历快?生成器如何记忆变量状态?Cpython,作为流行版本,源码其源代码为何选择C和Python编写?Python规范,分析内存管理,源码这里一一揭示。分析vins mono 源码学习 文章将深入探讨Cpython的源码内部结构,分为五部分:编译过程、分析解释器进程、源码编译器和执行循环、分析对象系统、源码以及标准库。分析了解Cpython如何工作,源码从源代码下载、分析编译设置,源码到Python模块和C模块的使用,让你对Python核心概念有更深理解。短线背离源码大全 2. Python 解释器进程 学习过程包括配置环境、文件读取、词法句法解析,直至抽象语法树。理解这些步骤,有助于你构建和调试Python代码。 3. Cpython 编译与执行 了解编译过程如何将Python代码转换为可执行的中间语言,以及字节码的缓存机制,将帮助你认识Python的编译性质。 4. Cpython 中的对象 从基础类型如布尔和整数,到生成器,深入剖析对象类型及其内存管理,让你掌握Python数据结构的核心。 5. Cpython 标准库 Python模块和C模块的交互,以及如何进行自定义C版本的安装,这些都是韭菜macd指标源码Cpython实用性的体现。 6. 源代码深度解析 从源代码的细节中,你会发现编译器的工作原理,以及Python语言规范和tokenizer的重要性,以及内存管理机制,如引用计数和垃圾回收。 通过本文,你将逐步揭开Cpython的神秘面纱,成为Python编程的高手。继续深入学习,提升你的Python技能。 最后:结论 第一部分概述了源代码、编译和Python规范,后续章节将逐步深入,让你在实践中掌握Cpython的核心原理。 更多Python技术,持续关注我们的傻瓜指标源码大全公众号:python学习开发。AI办公自动化:kimi批量搜索提取PDF文档中特定文本内容
要实现AI办公自动化,通过Python脚本批量搜索并提取PDF文档中的特定文本内容,如“资料来源”、“数据来源”和“来源”等,Kimi提供了一个解决方案。以下是一个步骤清晰的实现过程:
在Python编程环境下,你面临一个任务,目标是从数百个PDF文档中提取特定的文本信息。首先,使用pdfplumber库打开位于F:\研报下载\AIGC研报文件夹中的所有PDF文件。然后,通过遍历每个文件,逐行查找以“资料来源:”、“数据来源:”和“来源:”开头的文本,这些可能是你需要的内容来源。
脚本开始于导入必要的cf指标源码设置库,如os、re和pdfplumber,定义关键词列表和文件路径。对于每个PDF文件,代码首先检查文件类型,如果是PDF,它会尝试打开并提取文本。使用正则表达式搜索关键词,匹配到的文本会被保存到一个Excel文件中,文件名是'AI_Industry_Analysis.xlsx',保存在F:\AI自媒体内容\AI行业数据分析文件夹。
在处理过程中,脚本会监控可能出现的异常,如文件损坏或权限问题,并在遇到时提供错误信息。一旦所有文件处理完毕,脚本会输出一个总结,确认数据已保存到指定的Excel文件中。
下面是Kimi生成的简化版源代码片段:
...
import os
import re
import pdfplumber
...
# 遍历源文件夹中的PDF文件
for filename in os.listdir(source_folder):
if filename.endswith('.pdf'):
file_path = os.path.join(source_folder, filename)
try:
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
text = page.extract_text()
for keyword in keywords:
pattern = re.compile(keyword + ".*")
matches = pattern.findall(text)
for match in matches:
sheet.append([match])
except Exception as e:
print(f"处理文件{ filename}时发生错误:{ e}")
...
通过这段代码,你可以有效地自动化提取PDF文档中的特定文本信息。
PyTorch 源码分析(三):torch.nn.Norm类算子
PyTorch源码详解(三):torch.nn.Norm类算子深入解析
Norm类算子在PyTorch中扮演着关键角色,它们包括BN(BatchNorm)、LayerNorm和InstanceNorm。1. BN/LayerNorm/InstanceNorm详解
BatchNorm(BN)的核心功能是对每个通道(C通道)的数据进行标准化,确保数据在每个批次后保持一致的尺度。它通过学习得到的gamma和beta参数进行缩放和平移,保持输入和输出形状一致,同时让数据分布更加稳定。 gamma和beta作为动态调整权重的参数,它们在BN的学习过程中起到至关重要的作用。2. Norm算子源码分析
继承关系:Norm类在PyTorch中具有清晰的继承结构,子类如BatchNorm和InstanceNorm分别继承了其特有的功能。
BN与InstanceNorm实现:在Python代码中,BatchNorm和InstanceNorm的实例化和计算逻辑都包含对输入数据的2D转换,即将其分割为M*N的矩阵。
计算过程:在计算过程中,首先计算每个通道的均值和方差,这是这些标准化方法的基础步骤。
C++侧的源码洞察
C++实现中,对于BatchNorm和LayerNorm,代码着重于处理数据的标准化操作,同时确保线程安全,通过高效的数据视图和线程视图处理来提高性能。PyTorch 源码分析(一):torch.nn.Module
nn.Module是PyTorch中最核心和基础的结构,它是操作符/损失函数的基类,同时也是组成各种网络结构的基类(实际上是由多个module组合而成的一个module)。
在Python侧,2.1回调函数注册,2.2 module类定义中,有以下几个重点函数:
重点函数一:将模型的参数移动到CUDA上,内部会遍历其子module。
重点函数二:将模型的参数移动到CPU上,内部会遍历其子module。
重点函数三:将模型的参数转化为fp或者fp等,内部会遍历其子module。
重点函数四:forward函数调用。
重点函数五:返回该net的所有layer。
在类图中,PyTorch的算子都是module的子类,包括自定义算子和整网定义。
在C++侧,3.1 module.to("cuda")详细分析中,本质是将module的parameter&buffer等tensor移动到CUDA上,最终调用的是tensor.to(cuda)。
3.2 module.load/save逻辑中,PyTorch模型保存分为两种,一种是纯参数,一种是带模型结构(PyTorch中的模型结构,本质上是由module、sub-module构造的一个计算图)。
parameter、buffer是通过key-value的形式来存储和检索的,key为module的.name,value为存储具体数据的tensor。
InputArchive/OutputArchive的write和read逻辑。
通过Module,PyTorch将op/loss/opt等串联起来,类似于一个计算图。基于PyTorch构建的ResNet等模型,是逐个算子进行计算的,tensor在CPU和GPU之间来回流动,而不是整个计算都在GPU上完成(即中间计算结果不出GPU)。实际上,在进行推理时,可以构建一个计算图,让整个计算图的计算都在GPU上完成,不知道是否可行(如果GPU上有一个CPU就可以完成这个操作,不知道tensorrt是否是这样的操作)。
2024-12-23 23:42
2024-12-23 23:30
2024-12-23 22:52
2024-12-23 22:28
2024-12-23 22:18